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Abstract

Tangram is an old Chinese dissection puzzle where seven puzzle pieces have to be
placed within given shapes so that the whole shape is covered and none of the pieces
overlap. This report describes a JavaScript application capable of randomly generating
such shapes, rating them according to their interestingness. Finally, die application
displays a number of top candidates so that a user can choose a shape of his liking
and attempt to solve the chosen puzzle. Some possible candidates for calculating
interestingness are presented. These have been further investigated within a first user
study, which revealed that there exists at least a bit of consensus about which tangrams
are found to be interesting.
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1 Introduction

Tangram is an old Chinese dissection puzzle whose rules are easily understood, but
which can also be quite challenging. Seven puzzle pieces, called tans, have to be placed
within a given shape in a way such that the entire shape is covered. Additionally, none
of the pieces are allowed to overlap and all seven tans are to be used. As shown below,
the seven puzzle pieces are three- and four-sided convex geometrical shapes and can
be derived from cutting a square in a specific way.

Figure 1.1: Dissection of a square into the 7 tans and an example for a given shape

Tangram is said be one of the most popular dissection puzzles all over the world and
is even frequently used in education to teach children about mathematical concepts
like symmetry, area, perimeter, shape similarity and even the Pythagorean theorem.

The objective of this project is to create a tangram game that can be played in a
browser. The user should first be presented with a number of tangrams to choose
from and then be able to attempt solving the chosen tangram. While there exist
many collections of tangrams published in books, adding them to a database would
require time-consuming manual insertion and still always be limited to already existing
tangrams. Therefore, a different approach should be applied here. Instead of displaying
pre-defined shapes, the presented tangrams are generated randomly. The generated
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1 Introduction

tangrams should not be entirely random however, but be interesting in some way and
appealing to the player. This is achieved by generating a large number of tangrams that
are then ranked according to a measure defining the interestingness of the particular
shape. Additionally, the generation process is controlled in a way such that puzzles
with immediately obvious solutions are avoided. Another requirement that has to
be taken into account during generation is that the generated tangrams have to be
connected, meaning that a newly randomly placed tan has to have at least one point in
common with another already placed tan. For the scope of this project, tans are allowed
to be rotated by only multiples of 45◦.

Related Work

An overview on the history of tangrams can be found in either [19] or [5]. Aside from
more than 2,000 tangram examples, Slocum’s book contains an extensive enumeration of
tangram collections published all over the world. Elffers, on the other hand, additionally
deals with some mathematical properties of different subclasses of tangrams. This
includes grid tangrams [12], where the vertices of all tans can be placed in a coordinate
system in way such that all coordinates are integers, and convex tangrams, of which
only thirteen exist. The proof for the existence of only thirteen convex tangrams has
first been published by Wang and Hsiung [20] in 1942.

Furthermore, there have been some attempts at computationally solving tangrams.
Deutsch and Hayes [3] suggest a heuristic approach based on recursively splitting
the tangram and treating the newly created parts in a similar manner as the original
puzzle. In [17], a connectionist approach to solving tangrams has been proposed.
Kovalsky et al.[13] apply their approach to edge-matching puzzles to tangrams, where
edge-matching refers to the process of placing puzzle pieces with coloured edges in a
way such that the colours of adjacent edges match.

Possible candidates for interestingness measures for tangrams are the difficulty and
visual aesthetics of a shape. For other well known puzzles such as Sokoban [10] or
Sudoku [9], various difficulty metrics have been described. However, these are often
based on strategies applied during solving, which have not yet been researched as
extensively for tangrams [1]. One example for an attempt to quantify the aesthetic
value of polygons is Birkhoff’s aesthetic measure. It can be calculated in terms of order
and complexity of a shape, if these in turn can be quantified [6]. Nevertheless, many
studies in this area also conclude that aesthetic preferences are usually biased due
to a persons background [4]. Within tangram collections, shapes are often explicitly
categorised according to their correspondence to real world objects like animals, people,
numbers, letters, or simple geometrical forms. Therefore, finding interesting tangrams
also touches upon the subject of general purpose object recognition.
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1 Introduction

Outline

This report is organised as follows. Chapter 2 describes which mathematical concepts
are applied in generating tangrams, measuring their interestingness and conducting
computations on individual and groups of tans in a game setting. The following
chapter first introduces the structure of the overall application, and then describes the
algorithms involved. Some implementation details are presented in chapter 4. This
chapter specifically shows which features of the used programming language JavaScript
are advantageous for the implementation of a random tangram generator in a browser.
Chapter 5 shows the effect of different parameter settings during both generation and
ranking of tangrams, as well as the results of a first user study. Finally, chapter 6
mentions potential future enhancements to different aspects of the application and
concludes this report.
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2 Background

One of the major prerequisites for conducting calculations on tangrams as well as
individual puzzle pieces is a representation that supports the efficient computation of
different properties of both individual and multiple pieces. The calculations involved
in this project include, among others, the transformation of pieces, the detection of
overlap between pieces and determining whether a shape is completely covered by the
seven tans. This chapter describes the required geometrical primitives and additionally
shows how restricting the possible rotations of a tan to multiples of 45◦ leads to some
simplifications.

2.1 Tangram and Tans

The puzzle pieces as well as tangram patters are polygons, which are usually repre-
sented by a sequence of points or line segments. As the puzzle pieces in tangram
are always the same, this representation can however be simplified. When a tan is
positioned on a two-dimensional plane it can already be fully described by its type and
its position. There are five different tan types: the three-sided pieces: large, medium
and small triangles, of which two large and two small triangles exist, and the four-sided
pieces: square and parallelogram. In contrast to the other shapes, the parallelogram
does not exhibit reflection symmetry in the same manner as the other pieces, but is
rotationally symmetric. Therefore, it is the only piece that may have to be flipped in
order to solve a tangram. The position of a tan can be defined by the position of just
one vertex and the orientation of the tan, leading to a more lightweight representation
of tans that can be easily updated in case the tan is transformed.

A tangram can then be simply described by its tans. The outline of a shape is
useful for displaying tangrams as well as correctly detecting alternative solutions
to an originally generated one. Additionally, the outline plays an important role in
the definition of interestingness measures. As the randomly generated tangrams are
supposed to be connected, the outline of a tangram is a potentially self-touching
polygon that also can contains holes.

All things considered, the required components for representing tans and tangrams
are points defined by two coordinates in a two-dimensional plane and line segments
and thus these will be studied more closely in the following.
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2 Background

2.2 Coordinates

Taking a look at the way the tan pieces are constructed from cutting a square, one
can see that the irrational number

√
2 ≈ 1.4142135623 is essential for calculations

surrounding tans. Figure 2.1 shows the dimensions of the tan pieces when the side
length of the square is set to 4. With this setting, the hypotenuses of the two large
triangles have length 4 and their legs have length 2

√
2. The figure also shows that each

tan is composed of a number of base triangles like the one displayed to the right of the
square.

1

1

√
2

Figure 2.1: Dimensions of the tans

√
2 will therefore occur in many coordinates of points and direction vectors and

would implicate a heavy use of floating point arithmetic if coordinates would work
with such numbers directly. Floating point arithmetic is computationally more ex-
pensive than integer arithmetic and requires special care in comparison operations
due to rounding errors. A solution to this problem is to base all calculations on the
commutative ring

Z[
√

2] = {a + b
√

2 | a, b ∈ Z}

which essentially means that each number within a coordinate is represented by two
integers. The fact that Z[

√
2] is closed under addition and multiplication. All other

requirements for commutative rings can be shown in a similar way or be directly
derived from knowledge about Z.

(a + b
√

2) + (c + d
√

2) = (a + c) + (b + d)
√

2

(a + b
√

2) ∗ (c + d
√

2) = (ac + bd ∗
√

2 ∗
√

2) + (ad
√

2 + bc
√

2)

= (ac + 2bd) + (ad + bc)
√

2

The usage of Z as the basis for coordinates is only possible due to the dimensions of
the tans and the fact that tangrams have to be connected and none of the tans can overlap.
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2 Background

Additionally, rotations by 45◦ fit nicely into this scheme as sin(45◦) = cos(45◦) = 1
2

√
2

and direction vectors within tans have only horizontal or vertical direction or take a
form where both coordinates contain odd integers. This means that the factor of 1

2 does
not cause any problems.

2.3 Points

Points are represented by x- and y-coordinates that take the form of the coordinates
described in the previous sections. At some points during the computation an extended
representation is advantageous, particularly when points are being transformed, i.e.
rotated or translated. Before a transformation, a point is transferred into projective
plane, which is basically an euclidean plane embedded in the three dimensional
space, here at z = 1. This, together with a projective definition of lines, leads to
very interesting principles for intersecting lines and connecting points, but more
importantly has a great impact on how the transformation of points can be calculated.
The representation of a transformation within the usual euclidean space depends on the
type of transformation. The description of a translation is different from the one of a
rotation. Therefore, the composition of multiple transformations results in complicated
expressions. This is not the case for the projective plane. Its properties lead to the
uniform representation of transformations as matrices and thus the composition of
arbitrary transformations is simplified to simple matrix multiplication. Table 2.1 shows
how different transformations of a point (x, y)T in the euclidean and the projective
plane can be expressed [18].

Transformation Euclidean Plane Projective Plane

Rotation
(

cos(α) − sin(α)
sin(α) cos(α)

)(
x
y

) cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

x
y
1



Translation
(

x
y

)
+

(
tx

ty

) 1 0 tx

0 1 ty

0 0 1

x
y
1


Table 2.1: Comparison of transformations in euclidean and projective plane

Aside from the transformation of an individual point and the obvious combination
of points to form direction vectors, there exist some calculations to derive information
about multiple points. The determinant of the 2× 2 matrix containing two direction
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2 Background

vectors as columns is one example. It helps to calculate the relative orientation between
three points. Given three points A, B and C the determinant containing (C− A) and
(C− B) determines in which order the points are positioned or whether B is on the
right or left side of segment AC. A, B and C are collinear if the determinant is zero. For
values smaller than zero the triangle formed by the three points has been defined in a
counter-clockwise order, for values larger than zero the points are given in clockwise
order (see Figure 2.2).

C

A

B

clockwise

C

B

A

counter-clockwise

Figure 2.2: Relative orientation of three points or turning direction of consecutive line
segments

The concept of relative orientation of three points is applied in multiple algorithms
throughout this project. Two examples are a point-in-polygon algorithm that deter-
mines whether a given point is inside, outside or on the outline of a polygon and
the computation of the convex hull of a shape or a set of points. One possibility to
determine if a point lies inside a polygon is calculating the winding number which
characterises the number of times a polygon winds around a point [8]. The winding
number is computed by traversing the segments of the polygon and increasing or
decreasing the number depending on the relative position of the point to the respective
segment.

The convex hull of a shape can be computed using a technique called Graham’s scan
[2, Chapter 33]. It relies on first sorting all points according to their angle in respect
to the most lower left point and filtering out all points that have the same angle as a
point further away form the most lower left point. Then, the sorted points are traversed
and added or removed from the hull depending on their relative orientation to the two
previously added points. This algorithm inspired the outline computation that will be
presented in Section 3.3.
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2 Background

A

B

C

D

Figure 2.3: Intersecting line segments

2.4 Line Segments

Line segments are defined by their two endpoints. For some algorithms it makes sense
to sort the points such that the first point of a segment is always the one with smaller
x-coordinate or smaller y-coordinate if the x-coordinates are equal. The two questions
that arise in the context of line segments are whether two line segments intersect or
if a line segment contains a point. Both can be addressed by applying the concept of
relative orientation of three points, introduced before. As seen in Figure 2.3, two line
segments intersect if the points of one line segment lie on opposite sides of the other
line segment and vice versa. [2, Chapter 33]. When determining whether a point P lies
on a line segments AB, a determinant of 0 for (B− A) and (P− A) shows that the three
points are collinear. If this is the case, the parameter t for which P = A + t ∗ (B− A)

holds, can be calculated. If t is between 0 and 1, the point lies on the segment, as
A + t ∗ (B− A) defines the line through A and B.
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3 Design

This chapter deals with the algorithms specifically designed for the tangram generator.
Before going into detail about these algorithms the overall structure of the application
and its interface will be presented.

Once the user enters the site, the application starts to pre-compute some values that
are repeatedly used throughout the entire program, like direction vectors for tangrams,
and then randomly generates tangrams using an algorithm described in section 3.1. As
this takes some time depending on the device and the number of tangrams generated,
a progress bar indicates the current state of the generation progress. At all time some
information about how to interact with the application is displayed below the main
interface. In the very beginning, this also includes some information about tangrams in
general. After the generation progress has finished the tangrams are sorted according
to an interestingness measure and the six top ranked tangrams are displayed for the
user to choose from. An option for generating new tangrams is also provided. Some
candidates for interestingness measures are presented in section 3.2. If the user clicks
on one of the displayed shapes, a bigger version of the tangram becomes visible and
he or she can attempt to solve the puzzle by translating, rotating and flipping the
puzzle pieces until they cover the whole given shape. At this point it is also possible to
simply display the solution or receive a hint showing the position of one of the tans. In
order to collect some statistics about which tangrams are preferred and how they are
solved, some data is sent to a database and can then be used to derive new interesting
measures. Each time the user chooses one of six tangrams, his choice along with a
suitable representation of the presented tangrams is sent to a database. Statistics sent
after solving a puzzle include the tangram itself as well as the time needed to solve
the puzzle, the number of hints used and the number of actions performed to reach a
solution.

The final user interface is shown in Figures 3.1 and 3.2.

3.1 Generation Process

Two approaches to randomly generate tangrams have been pursued. Both approaches
have in common that they start out with generating an order for how the seven tans
are placed and then position the first tangram. Subsequently new tans are placed by
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Figure 3.1: Interface showing six tangrams to the user to choose from

Figure 3.2: Interface allowing to solve a tangram
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Figure 3.3: Invalid placements of the red tans when the respective blue one has already
been present

randomly choosing a vertex of one the already placed tans and choosing a vertex of the
new tan. The new tan and the already placed pieces are then connected at those two
points if the placement of the new tan does not violate the constraint that pieces cannot
overlap. A collection of invalid placements is shown in Figure 3.3. If the placement
fails, a new attempt of placing the tan is made. This process is continued until all 7
have been placed.

Determining if a placement is valid is done in three steps. The first step uses the
point-in-polygon algorithm mentioned before. All points of the newly placed tan as
well as between one and four points inside the tan are tested for containment in other
tans. The points inside of a tan are needed to correctly detect cases where one puzzle
piece is entirely contained in another one. The direction vectors to these points are
pre-calculated and include vectors to the center of each tan and depending on the size
of a tan more vectors that are derived from partitioning tans in some way. Without
modification this would introduce thirds and halfs into coordinates, which is why the
direction vectors of tangrams have been scaled by six compared to the dimensions
presented in chapter 2. This still does not correctly handle cases where a large tan
is placed on top of a small tan such that it lies completely inside the newly placed
tan. Thus the same test is conducted the other way around. The second step uses
line segment intersection to determine if any of the segments of already placed tans
intersect with the segments of a new tan. Lastly, the bounding box of the tans including
the newly placed tan is computed. The placement is then rejected if the the horizontal
or vertical range is larger then a certain threshold. This step has been added in an
attempt to avoid sequences of tans that are only attached at one point and favour
tangrams that are somewhat compact.

As a first naive approach an orientation for each tan is sampled at very beginning.
The attachment point at the already placed tans is chosen first. Then all points of
the new tan are considered as possible attachment points in random order. If none
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3 Design

of the points can be used, a new attachment point of the placed tans is sampled.
Unfortunately, the fixed orientations together with the range threshold imposes a very
strong restriction on the generation process which can lead to configurations where
some tans are still missing, but cannot be placed anymore. Furthermore, this generation
process leads to mostly loosely connected tangrams. Therefore, the second approach
chooses orientations dynamically. Additionally, this approach steers the computation
towards tangrams where tans have many edges in common.

The second approach starts out by sampling an orientation for the first tan and
then places it. The process then continues to find two attachment points as before,
however here, the orientation is sampled based on a probability distribution that favours
orientations where the edges of the new tan align with already places pieces. This
probability distribution is computed by checking if any of the segments meeting in
the attachment point align for any of the orientations and apply a larger weight to
such orientations. If the tan cannot be placed with the sampled orientation, a new
orientation is sampled from the already computed probability distribution, where the
probability of the just attempted orientation is set to zero. If none of the orientation
lead to a valid placement, a new attachment point is chosen.

3.2 Interestingness Measures

The following list shows all properties that are computed after a tangram is generated
sorted into different categories. While some of these are appropriate to be used directly
as interestingness measures, others might be more suitable for filtering generated
tangrams in respect to a certain properties. Altogether the properties have been chosen
in an attempt to depict concepts like difficulty, visual aesthetics and correspondence to
real world objects.

Properties of the outline: total number of vertices in the outline, number of vertices
in the outline excluding holes, perimeter and number of hanging pieces
The first three properties are presumedly related to the compactness and therefore
difficulty of tangrams. The number of hanging pieces is defined as the number of
points where the outline touches itself and might capture the correspondence to
real-world objects for a low non-zero result.

Properties of holes: number of holes, number of vertices involved in holes, total hole
area and type of holes
These properties are potentially more useful for filtering on the supposition that
tangrams with smaller holes that for example do not touch the outer outline are
interesting. This is the reason for including the type of holes as a property. Holes
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can either touch the outer outline or not. For multiple holes, a mixed case can
also occur.

Properties of edges longest edge, shortest edge, number of matches edges
Shapes that correspond to real world objects often have small spikes which should
be captured by the computation of the shortest edge in the outline.

Properties of points range in x and y, convex hull percentage, number of matched
points
The first three properties again deal with the level of compactness. The convex
hull percentage is measures by first calculating the convex hull of the outline
of a shape and then determining the percentage of area covered by the original
shape. Thus, shapes with a convex hull percentage close to one are almost convex.
Those often do not reveal much information about a tangram pattern and are
therefore assumed to be difficult to solve. The number of matched points refers
to the number of pairs of points that lie at the same position. This measure is
highest when multiple tans meet in one point. Ranking according to this number
should result in somewhat star-like shapes.

Symmetry: A shape with symmetric features is assumed to be visually pleasing. Here,
axis symmetry is considered.

3.3 Gameplay

The central algorithm needed during gameplay as well as for displaying the tangrams
is the computation of the outline of a collection of non-overlapping tans. Drawing
tangrams as individual tans could lead to the user being able to infer some of the
structure due to the existence of lines between tans, which cannot be removed by setting
borders without giving away some unwanted hints elsewhere. Additionally, computing
the outline of the tans placed by the user and checking it against the outline of a given
shape provides a neat possibility to detect all correct solutions to a tangram instead of
just the generated one. In order to efficiently check the equality of the given outline
containing only coordinates with integer numbers against the inexact coordinates of
puzzle pieces, a snapping mechanism has been introduced.

The first step of computing the outline is calculating a set of line segment candidates
that could be involved in the outline. These are the line segments of each individual tan,
however split up into multiple segments where points from other tans touch a segment.
Line segments that occur twice in this computation lie somewhere inside the tangram
and therefore can be removed completely. The remaining segments are then traversed
in a somewhat similar way as point in the convex hull computation. The computation
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starts with the point with the lowest x, and lowest y coordinate if there are multiple
points with the same x-value and initialises a last segment as a horizontal segment
with the starting point as one endpoint. Then the segment in that point with the largest
angle to the last segment is taken as a new last segment. This process is continued
until the starting point is reached again and all points of the shape are contained by its
outline. The second condition is needed to ensure that the process does not terminate
to early in cases where the starting vertex should be revisited multiple times as the
outline touches itself in that point. If the area of the computed outline is larger than the
sum of areas of all puzzle pieces, the outline of the tangram contains holes that have
yet to be calculated. However, holes are traversed in a very similar manner.
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4 Implementation

The tangram generator and its associated interfaces for choosing one tangram out of a
given number of presented ones and for solving a chosen tangram are implemented in
JavaScript. JavaScript is a scripting language originally designed for adding interactivity
to web pages by manipulating the structure and content of HTML-documents, but
in recent years has also gained popularity in other domains like game development
and server-side applications. Most modern browsers on both desktop and mobile
devices include a JavaScript engine, which means that the user is not required to install
additional frameworks for an application to execute properly. Other technologies for
running client-side computations in a browser, like Java Applets, do not provide such
widely spread support and have additionally experienced declining popularity due to
security issues. In consequence, JavaScript is well suited for an application targeted to
support various input paradigms on different devices [16].

The Document Object Model (DOM) is an interface to HTML and XML documents.
It allows accessing and changing the elements of a document and their properties as
well as attaching event handlers to elements. Almost all changes in the interface of the
tangram generator are realised with DOM manipulations. On startup, the web page
contains structural elements for all parts of the interface that will be displayed during
execution. This includes elements for each of the six tangrams, an area for playing the
game and buttons for invoking processes not directly associated with a specific element.
While some elements, like the buttons, are only hidden when first visiting the page,
others have yet to be filled with content, like the elements displaying tangrams or the
game play. When displayed, tangrams are drawn as Scalable Vector Graphics (SVG)
[14], exploiting the fact that SVG is XML-based. The elements of a SVG-element are
therefore part of the DOM and can be treated like any other element. An alternative
to using SVG as a drawing method is the HTML5 canvas element. Contrary to SVG,
the canvas element is raster-based. After an element has been drawn it can not be
updated in any way. Using SVG, moving a tan corresponds to updating the x and y
attributes of the corresponding polygon. Achieving the same result with canvas on the
other hand requires for the entire scene to be redrawn. Another advantage of using
SVG as the graphics rendering methods, is the possibility of attaching event handlers
to SVG elements. Event handlers are functions that are executed in case a certain event
happens. Typical events in the scope of web pages are events involving user interaction
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through mouse, keyboard and touch or browser actions. The tangram generator almost
solely makes use of mouse and touch events in order to make the interface interactive
on both desktop and mobile devices. Event handlers for clicking and dragging are
attached to an element once it is added to the DOM and the translation, rotation and
flipping of tans.

JavaScript code is executed in a single thread and reacts asynchronously to events
such as the ones described above. This implicates that heavier computations like the
generation of a large number of tangrams block the simultaneous execution of any
other code. Informing the user about the current state of the application during such
computations is crucial to provide a satisfying user experience. Web workers [7] are a
technology introduced to JavaScript to allow the execution of scripts in an additional
thread in the background. In contrast to the main execution thread, workers cannot
directly access the DOM or use methods and properties associated with the current
window. They can however communicate with the main thread in the form of messages
that can be handled in the same way as any other event. Thus, Web workers enable
showing the progress of the generation process without having to repeatedly interrupt
it. The web worker handling the entire generation process is started immediately after
the webpage with the tangram generator is entered. Each time a tangram has been
generated, the worker sends a message to the main thread, which then updates the
progress bar accordingly. After the desired number of tangrams has been generated,
the web worker finishes by sending the generated tangrams to the main thread.

Which kind of messages can be exchanged between main thread and web work-
ers is browser-dependent. Fortunately, all browsers are capable of sending String
messages between threads. JavaScript Object Notation (JSON) is a key-value based
data-interchange format with which an object can easily be transformed into a sendable
String, so that objects like the generated tangrams can be exchanged as well. An
example for a JSON representation of tan can be seen below.

{"tanType": 0,
"anchor": {"x": {"coeffInt": 42, "coeffSqrt": -6},

"y": {"coeffInt": 30, "coeffSqrt": -6}},
"orientation": 3}

JSON objects are also used to send statistics about chosen tangrams and played
games to a simple HTTP Server written in Node.js [11], a platform often referred to
as server-side JavaScript. The server writes all JSON files it receives into a database.
The database used here is MongoDB [15], which as a document-oriented database,
functions very well with JSON objects.
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5 Results

5.1 Generation Process

Section 3.1 presented two algorithms used to randomly generate tangrams. Additionally,
there exist two parameters that can be adjusted to influence the generation process.
The first parameter is a threshold setting the largest possible difference in x- and
y-coordinates between two points. This parameter is used in both approaches. The
second parameter applies only to the approach that steers towards a larger number of
edge-matchings. It determines how high the probability for choosing an orientation
with matched edges is compared to any other orientation. Figure 5.1 shows exemplary
results of generating six tangrams for both approaches and different parameter settings.
Tangrams generated by the naive approach with a range of 50 are often only connected
at points and contain next to no matched edges. When reducing the threshold to
30, more matched edges exist, but the resulting shapes are also somewhat similar
and square-like. However, generating only these six tangrams took more then 70
attempts. The edge-matching approach obviously contains more matched edges. When
adjusting the probability parameter, one can see a definite effect on the result when
choosing a lower value. Increasing it to 1000 leads to Tangrams that are almost
completely connected at edges. Increasing this value past 1000 has no visually obvious
implementations. Overall, the effect will possibly become completely obsolete once a
larger number of tangrams is generated.

5.2 Interestingness Measures

The properties presented in section 3.2. Figure 5.2 shows a few examples for such
measures. As expected, ranking according to both a high convex hull percentage and
a low number of outline vertices leads to quite compact tangrams which are possibly
harder to solve than tangrams where the tan pattern is more evident. Combining these
two measures, leads to figures that are a bit less compact . Another promising measure
is based on ranking according to a high number of matched vertices which should
favour shape where at least part of tangram features an underlying star-like structure,
as many pieces surround one point. Subjectively, the tangrams sorted to the top with
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5 Results

(a) Naive approach (b) Naive approach with lower range threshold

(c) Edge-matching approach (d) Edge-matching approach with lower range
threshold

(e) Edge-matching approach with higher edge-
matching weight

(f) Edge-matching approach with lower edge-
matching weight

Figure 5.1: Results of generating six tangrams with different algorithms and different
parameter settings

18



5 Results

(a) Ranking based on a high convex hull per-
centage

(b) Ranking based on a low number of outline
vertices

(c) Ranking based on a high convex hull per-
centage and a low number of outer outline
vertices

(d) Ranking based on a high number of matched
vertices

Figure 5.2: Results of generating 10.000 tangrams and ranking them according to differ-
ent interestingness measures
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5 Results

Figure 5.3: Statistics on the six tangrams presented to all users

this measure come closest to representing real world objects.

5.2.1 User study

In addition to the interface described in the beginning of chapter 3 an evaluation inter-
face has been created in order to conduct a first user study. After generating tangrams,
the participants were presented with six tangrams for ten times and instructed to each
time choose the shape that they found most interesting among the six. The presented
tangrams were chosen randomly and without any sorting. In four cases, a part of the
generated tangrams was filtered using certain properties and a random subset of the
filtered tangrams was shown. Additionally, the first six shapes were not part of the
set of randomly generated tangrams, but the same for all users. Figure 5.3 shows a
statistical analysis for the choice of the 53 participants in the case of those first six
shapes. The shapes are ordered according to their rank determined by the percentage
of users that chose the respective tangram as the most interesting one. The diagram
also displays which rank among the six, the most expressive properties for the chosen
tangrams would have reached if the tangrams were ordered according to the respective
measure. Surprisingly, ranking according to a high number of (outer) outline vertices
comes closest to the actual ranking at least for the two shapes that have been chosen as
the most interesting ones by the majority. This result can probably not be generalised
however, as only a single choice has been analysed here. Additionally, users chose only
one shape as the most interesting one, which provides no information on their notion
of interestingness of the other shapes.
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6 Conclusion and Future Work

In conclusion, this report showed that a tangram generator can be implemented as a
browser application with solely client-side computations that is capable of generating a
large number of tangrams within a reasonable time frame even on mobile devices. A
first user study was conducted and showed that there exists at least a bit of consensus
about which shapes are interesting. The game associated with the generator has
received largely positive feedback. In just 2 days more than 150 tangrams have been
solved by more than 40 users.

Potential enhancements for the generator include the improvement of interestingness
measures and some additions to the game interface. Specifically a thorough examination
of a larger scale evaluation should lead to promising combinations of existing properties.
One possible measure for difficulty would be the number of solutions of a tangram or
even just the number of possible locations for the large triangle as the placement of
those restricts the possibilities for the other pieces most. Another feasible improvement
which aims to enhance the user experience of the generator, would be to allow the user
more control over the generation process by providing checkmarks or sliders for some
selected properties.

Currently, the game interface reacts to only one finger touches on mobile devices. A
gesture using two fingers for rotating elements has become more common. By making
use of HTML5 Local Storage, a game could be left and then continued later. Similarly,
a possibility to share interesting tangrams with other users could introduce elements of
a more competitive gameplay. Furthermore, different rotation angles and additional
attachment points could be investigated.
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