
Temporal Treemaps: Static Visualization of Evolving Trees

Wiebke Köpp and Tino Weinkauf

temporaltrees

layout

constraints_hierarchy.cpp

constraints_topology.cpp

simulated_annealing.cpp

rendering

cushion.cpp

queue.cpp

tests

temporaltrees

layout

constraints.cpp

simulated_annealing.cpp

rendering

cushion.cpp

queue.cpp

tests

temporaltrees

code

constraints.cpp

cushion.cpp

queue.cpp

simulated_annealing.cpp

regressiontests

unittests

temporaltrees

code

CMakeLists.txt

cushion.cpp

heuristic.cpp

simulated_annealing.cpp

regressiontests

unittests

temporaltrees

code

CMakeLists.txt

cushion.cpp

heuristic.cpp

readme.md

simulated_annealing.cpp

regressiontests

unittests

simulated_annealing.cpp

constraints_hierarchy.cpp

constraints_topology.cpp

queue.cpp

cushion.cpp

tests

regressiontests

unittests

constraints.cpp

heuristic.cpp

CMakeLists.txt

readme.md

Figure 1. Our method optimizes a layout for a series of trees and renders it using an adaptation of cushion rendering. Notably, we
support topological changes to the trees such as merges and splits on all hierarchy levels. The shown example displays five time steps
in the evolution of a file system hierarchy, roughly resembling the code base for this paper, where folders and files merge, split, appear,
and disappear (top). Our method displays these evolving trees in a single layout paying attention to both the merges/splits as well as
the hierarchical nesting (bottom).

Abstract— We consider temporally evolving trees with changing topology and data: tree nodes may persist for a time range, merge or
split, and the associated data may change. Essentially, one can think of this as a time series of trees with a node correspondence per
hierarchy level between consecutive time steps. Existing visualization approaches for such data include animated 2D treemaps, where
the dynamically changing layout makes it difficult to observe the data in its entirety. We present a method to visualize this dynamic
data in a static, nested, and space-filling visualization. This is based on two major contributions: First, the layout constitutes a graph
drawing problem. We approach it for the entire time span at once using a combination of a heuristic and simulated annealing. Second,
we propose a rendering that emphasizes the hierarchy through an adaption of the classic cushion treemaps. We showcase the wide
range of applicability using data from feature tracking in time-dependent scalar fields, evolution of file system hierarchies, and world
population.

Index Terms—Treemaps, Temporal trees.

1 INTRODUCTION

Hierarchical data structures are common. Filesystems, source code
repositories, HTML/XML files, or the organizational structure of states
and companies are only few examples. The large amount of different
visualization approaches for trees speaks to both the importance of
the data type and its ability to spark the interest of the visualization
community.

• All authors are with KTH Royal Institute of Technology, Stockholm, Sweden.
E-mail: {wiebkek |weinkauf}@kth.se .

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

It is particularly useful to associate data to the nodes of a tree. Differ-
ent methods can then be used to reveal the largest or smallest parts of the
hierarchy. The concept of nested layouts, in particular treemaps [28], is
a wide-spread visualization approach for such trees.

Data associated with a tree may change over time and it is of high
interest to observe the temporal development of this data. Dynamically
adjusting treemaps [19,30–33,37] have been proposed for this. Further-
more, stream graphs enhanced with hierarchical information [3, 14, 40]
provide a static overview of the entire temporal development of trees
with dynamically changing data.

This paper deals with trees whose data and topology change over
time. Essentially, the entire tree can transform almost arbitrarily as long
as it remains a tree. To be precise, we consider a time series of trees
with a node correspondence per hierarchy level between consecutive
time steps. Tree nodes may appear and disappear, merge and split on all

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

hierarchy
level

0

1

2

a

b c

d e

root

leaves

parent

child

(a) Tree terminology.

a

b c

d
e

a

b

c d

e

(b) 2D treemap layout as introduced by Johnson and Shneiderman [23, 28].

a

b

c

d

e

(c) 1D treemap layout.

Figure 2. Treemaps can be defined in different dimensions. A classic 2D layout makes excellent use of a 2D display space, but incorporating a
temporal dimension is difficult. A 1D treemap layout frees up one spatial dimension for incorporating the temporal evolution of the tree.

hierarchy levels, and the associated data may change. We only exclude
cases where a child changes its parent.

Temporally evolving trees can of course be visualized generically
by applying any tree visualization method to each individual time step.
This is often not satisfying, since discontinuous layout changes make it
difficult to observe the data. Recently, Lukasczyk et al. [26] presented
Nested Tracking Graphs, the first method to address such data. While
the method has been described in the context of hierarchically nested
graphs, such data can just as well be seen as a time series of trees.
Lukasczyk et al. [26] represent time statically along a spatial axis and
draw nodes as bands of varying thickness along this axis. They are
nested inside their parent’s band. The method exhibits a large amount of
intersections, since the layout algorithm largely ignores the hierarchical
relationships. Furthermore, the method has been designed for data
where the parent’s data value exceeds the sum of the children’s data.
This makes it inapplicable in the large number of application scenarios
where the sum of the children’s data equals the parent’s data (e.g., a
filesystem).

We give the following contributions:

• We present a novel layout algorithm for temporally evolving trees
with changing topology and data. It considers the entire hierarchy
and time span at once to produce a layout with as few intersections
as possible. This is based on a combination of a heuristic and a
simulated annealing optimization approach. The layout algorithm
runs on the order of a few seconds.

• We propose a rendering scheme that emphasizes the hierarchy
through an adaptation of the classic cushion treemaps [38]. This
makes our method applicable to data sets where the sum of the
children’s data equals the parent’s data.

• We propose a data structure for temporally evolving trees, which
records only the changes to the tree. Besides its space-efficiency,
it also reduces the computation times of the layout algorithm
drastically.

• We showcase the wide range of applicability using data from
feature tracking in time-dependent scalar fields, evolution of file
system hierarchies, and world population.

The paper is organized as follows: Section 2 recollects the theory
and previous work around trees, treemaps, and related visualization
methods. We present our data structure for temporally evolving trees in
Section 3. Our two main contributions, the layout and the rendering,
are presented in Section 4. We evaluate our method in Section 5, show
results from different domains in Section 6, and conclude in Section 7.

2 RELATED WORK AND BACKGROUND

2.1 Trees and Treemaps
A tree T = (N,E) is a hierarchical data structure with a set of nodes
N and a set of directed edges E. Exactly one node is the root of the
tree which has only outgoing edges. All other nodes have exactly one
incoming edge from their parent, and zero or more outgoing edges to
their children. Nodes with no children are called leaves. The hierarchy
level of a node is determined as the number of edges in the uniquely
defined path from the root to that node. See Figure 2a.

A common and useful way of associating data to a tree is to prescribe
data values at the leaves and describe the data at each parent node p as
the sum of the data of its children ci

d(p) = ∑d(ci) . (1)

A fitting example is a file system hierarchy where the files (leaves)
occupy a certain size on disk, while the directories (parents) are a mere
container with its size being the sum of their files and subdirectories.

Treemaps are a common tool for visualizing trees with associated
data in a space-filling, nested layout. Each node is drawn in a size that
relates to its data and serves as a container for drawing its children.
Johnson and Shneiderman [23, 28] introduced the general concept: a
rectangular space is associated with the root. Its children are drawn by
dividing the rectangle along the x-axis in relation to the amount of data
per child. This process continues by alternating the partitioning axis in
each hierarchy level. Figure 2b illustrates this.

Different treemap layout variations have been proposed. Bruls et
al. [8] strive for creating squares when partitioning the space in order
to make tree nodes easier to compare. Bederson et al. [29] propose
treemaps that preserve a given order in the original data. Other shapes
than nested rectangles have been proposed as well, including general
polygons within rectangles [16] , Voronoi cells [1], and bubbles [18]
with the latter specifically targeting visualizing uncertainty in the data.

Treemap rendering methods differ in how a node’s hierarchy level
is displayed. Johnson and Shneiderman [23, 28] use boundary lines
between the rectangles. Balzer and Deussen [1] emphasize the hier-
archy through boundaries and color variation. Van Wijk and van de
Wetering [38] propose cushion treemaps, which emulate a diffusely lit
surface of varying height according to the hierarchy. In this paper, we
adapt this strategy for our temporal treemaps, see Section 4.3.

Note that treemaps can also be defined in other dimensions. As
noted already by Shneiderman [28], a treemap can be defined in 3D by
subdividing a cube or in 1D by recursively subdividing a straight line.
Neumann et al. [27] make use of a 1D nested layout to augment the
hierarchical information with non-hierarchical relations. A 1D treemap
frees up one display dimension for other information; we will exploit
this later for incorporating the time dimension. Figure 2c shows a 1D
treemap.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

t0 t1 t2 t3 t4 time

`= 2

`= 1

`= 0
hierarchical edge EN
temporal edge ET

node

leaf

merge event split event

(a) G = (N,ET ,EN): Time series of trees with node correspondences between
time steps [26]. This example has 29 nodes and 48 edges.

t0 t1 t2 t3 t4 time

`= 2

`= 1

`= 0
hierarchical edge EN
temporal edge ET

aggregated node

leaf

merge event split event

(b) T = (N ,ET ,EN): Aggregated temporal tree with time series of data values
at the nodes. This example has 9 nodes and 18 edges.

Figure 3. Aggregated temporal trees (right) encode information more space-efficiently than a time series of trees (left), especially when only a few
nodes change their data values in every time step such as in the history of a file system. See also Section 5.

2.2 Visualization Approaches for Time-dependent Trees

Time can affect different aspects of a tree: The data at the nodes may
change over time, or the topology of the tree may change, or both.
Different visualization approaches cover different aspects, as discussed
in the following.

Consider time-dependent data values on an otherwise static tree.
This can be described using a time series at each node [d1, . . . ,dn] for
n time steps. In the case that the data value of a parent is the sum of
its children, it suffices to store the time series at the leaves and restore
them at all other nodes using Equation (1).

Many methods exist to represent several 1D graphs stacked on top of
each other. Each individual graph is essentially a thick band represent-
ing the evolution of a topic or similar. ThemeRiver by Havre et al. [21]
is among the first ones. The bands are ordered so that the evolution of a
single band has as little as possible effect on the other bands. Detailed
discussions of the amount of “wiggles” in such visualizations have been
made by Byron and Wattenberg [11] as well as Bartolomeo and Hu [2].
A number of works [3, 14, 40] incorporate hierarchical information into
stacked graphs. Hierarchy is conveyed through color encoding [14, 40],
joint displaying of a tree [14, 40], or showing hierarchy layers sepa-
rately [3] and facilitates interactive exploration of the data [3, 40]. In
contrast to our approach, the topology of the tree remains static and
nodes do not appear or disappear.

Several approaches extend the treemap concept to show time-
dependent data on topologically static trees: animation is used to blend
between the different time steps. The challenge is to balance between a
good treemap layout and the number of layout changes [19, 30–33, 37].

Consider both the topology of the tree and the node data change
over time. Recently, Lukasczyk et al. [26] presented a method for
dealing with this kind of data. While it is phrased orthogonally as
a method to work on nested graphs rather than a series of trees, it
can just as well be seen as the latter. The method uses the Graphviz
library [17] for the layout and while this produces great results, the final
compositing step induces a larger number of intersections/crossings,
because the hierarchical information is not used when computing the
graph layout. We will detail this in Section 4.1. This paper presents a
novel algorithm for the graph layout which is able to produce layouts
with less intersections/crossings. Merges and splits in connection to
hierarchy have also been explored by Cui et al. [15]. They visualize
the evolution of topics in text corpora. However, not the entire tree is
shown in each time step, but rather just a cut through the tree at possibly
varying hierarchy levels.

Burch et al. [10] draw dynamically changing graphs with a hier-
archical nesting next to each other. The resulting edge crossings are
anticipated and managed with a splatting technique. Other methods for
general dynamic graph visualization are discussed in Beck et al. [4].

2.3 Approaches to Constrained Ordering
We model our layout computation by creating a constrained ordering
of objects. Each constraint requires the involved objects to appear
consecutively within the ordering. A similar problem occurs in finding
path supports in hypergraphs [9]. In contrast to regular graphs, edges
of hypergraphs can involve more than two nodes. In a path support, all
nodes incident to an edge are positioned next to each other. Algorithms
exist to compute path supports in polynomial time iff all constraints
can be fulfilled [6, 22]. However, computing optimal partial solutions,
i.e., fulfilling as many constraints as possible if it is impossible to fulfill
all constraints, has been shown to be NP-complete [20].

By interpreting leaves as nodes and constraints as edges of a hy-
pergraph, our layout problem can be transformed into a path support
problem. However, this neglects the temporal aspect of our nodes
which leads to a substantially larger solution space. Nevertheless, fu-
ture versions of our framework may potentially test for the existence of
an optimal solution.

Apart from our scenario, constrained ordering also occurs in the evo-
lution of stories [25, 36], where the co-location of characters imposes
restrictions. The problem has been approached using a hypergraph for-
mulation as above [36] as well as the computation of an initial solution
allowing for interactive reordering to further minimize crossings [25].

3 DATA STRUCTURE FOR TIME-DEPENDENT TREES

A practically useful definition for temporally evolving trees has re-
cently been given by Lukasczyk et al. [26]: a nested tracking graph
G = (N,ET ,EN) consists of a set of nodes n`

t ∈ N where each node has
a time step t, a hierarchy level `, and a data value d. Edges in EN ex-
clusively describe the hierarchical relationships in a time step, i.e., the
restriction of G to a time step t yields a proper tree G|t = (N|t , EN |t)
as defined above, or possibly a forest of such trees. Edges in ET exclu-
sively connect nodes of the same hierarchical layer `, i.e., a restriction
G|` = (N|` , ET |`) gives a tracking graph, in which nodes may appear,
disappear, merge, or split. Figure 3a shows an illustration.

Essentially, nested tracking graphs store a tree per time step and
the tracking information in between. This definition serves well when
tracking super- or sublevel sets [26] in time-dependent scalar fields,
where every node’s data value changes in every time step. However,
such a data structure is rather space-consuming when dealing with data
sets where only few nodes change in every time step such as in a file
system hierarchy: storing an entire file system tree for each change to a
file quickly leads to a large number of nodes and edges.

We define an aggregated temporal tree T = (N ,ET ,EN) following
the nested tracking graphs of Lukasczyk et al. [26] with the adaption
that a node n`

ta,tb ∈N exists over a time span [ta, tb] and stores a time
series of data values [dta , . . . ,dtb]. This allows for a compact encoding of
data values that records only changes. Figure 3b shows an illustration.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

`0

`1

`2

Figure 4. Lukasczyk et al. [26] uses Graphviz [17] to produce the graph
layout in each hierarchy level independently (left). These layouts are
optimized to have as few intersections as possible. But when combining
all levels into a nested drawing by forcing the children to live inside
their parents’ space, it becomes apparent that the graph layout has no
knowledge of the hierarchical nesting in G, and we get a number of
intersections (right). This example has been created with the original
software of [26]. Note that the underlying cause for the intersections is
the violation of two hierarchical constraints in the sorting of the leaves
in layer `2, as discussed in Section 4.2 and illustrated in Figure 6. See
Figure 7 for the result of our method, and Figure 3 for the underlying
data.

We can use the classic tree terminology also for T . We have different
hierarchy levels `, parent nodes, children nodes, leaves, etc. In contrast
to G, we define T such that it always has a single root from which we
can access all other parts of the temporal tree, e.g., by following the
hierarchical edges EN .

While the tree is temporally evolving, it may undergo structural
changes. We call them topological events and they are the appearance
of a node, the disappearance of a node, the merge of several nodes, and
the split into several nodes. Merges and splits are the most important
topological events for computing the layout, since they require that the
involved nodes are right next to each other. A merge and a split event
are indicated in Figure 3.

It is straightforward to convert G into T and vice versa. We convert
G into T by eliminating direct temporal correspondences. Two nodes
u,v have a direct temporal correspondence, if the edge (u,v)∈ET is the
only outgoing temporal edge of u and the only incoming temporal edge
of v. We aggregate a chain of such nodes and edges into a single node
with a time series of data values. We convert T into G by collecting
all time steps from all time series in T and deaggregating all nodes
n`

ta,tb ∈ N into a chain with direct temporal correspondences for all
time steps overlapping the range [ta, tb].

Note that in graph theory, nodes are considered zero-dimensional
structures whereas our aggregated nodes are one-dimensional entities.
As such, aggregated nodes can intersect each other when being drawn in
the plane, which translates to an edge crossing in the planar embedding
of two node-edge chains. In the rest of the paper, we will often just
speak of “nodes” when referring to “aggregated nodes.”

We also note that all algorithms in this paper can be run on the non-
aggregated G or the aggregated T , incurring different computational
costs. Most notably, the graph layout optimization in Section 4.2.3 has
drastically shorter computation times when running on the aggregated
T . We evaluate the runtime aspects of our method in Section 5.

4 TEMPORAL TREE MAPS

Our goal is to create static visualizations of time-varying trees including
topological events. We use the two-dimensional plane for our layout:
one dimension represents time, while the other dimension represents
the hierarchical nesting similar to a 1D treemap layout (cf. Figure 2c).

The next section characterizes this as a graph drawing problem
and reviews the shortcomings of existing approaches. Section 4.2
follows with our own solution to the problem. Section 4.3 presents our
adaptation of cushion treemaps to temporal trees.

t0 t1 t2 time

Figure 5. It is not always possible to draw a graph intersection-free. In
particular, this is the case in our setting, where the nodes are aligned with
time steps. The rendering method of Lukasczyk et al. [26] shows intersec-
tions directly (top-right image), whereas they appear as discontinuities in
the cushion rendering (bottom-right image) discussed in Section 4.3.

4.1 Characterization as a Graph Drawing Problem

Our data structure T is a hierarchically nested graph. If we consider
for a moment each hierarchy level independently, then the nodes in
each level form a directed graph with topological events as given by
the edges in ET . This is by itself already a graph drawing problem for
each hierarchy level.

The challenging part is due to the hierarchical nesting: the goal is
to draw all these graphs inside each other, i.e., the graph of hierarchy
level ` shall be drawn inside the graph of hierarchy level `−1. This
means that a topological event in a layer `− 1 has an impact on the
graph drawing in layer `. For example, consider the merge of two
nodes in layer `−1 at time ti. Each of them has children, which have
to be drawn in layer ` such that they are next to each other at time ti to
accommodate the merge of the parents. If the children were not next
to each other at time ti, they would need to intersect other nodes in
order to be drawn inside their newly merged parent from ti onwards. In
other words, the hierarchical nesting imposes constraints on the graph
drawing in each layer.

Lukasczyk et al. [26] presented the first approach to drawing nested
graphs by computing the graph layout in each hierarchy level indepen-
dently and forcing them to nest inside each other in the final drawing
stage. This leads to a large amount of intersections in the final image.
The graph layout of each hierarchy level is done using the Graphviz
library [17]. The optimized graph layout of this library makes sure to
avoid intersections as much as possible in each hierarchy level. But
since no knowledge of the hierarchical nesting is given, the graph layout
cannot accommodate the constraints from other hierarchy levels. The
final drawing stage then uses only the graph layout of `= 0 directly. All
other levels force the children to live inside their parents as follows: for
a parent p and a time step ti, find the children of p in the graph layout
of the children’s level and draw them inside p in the same order as
they have been encountered in the children’s level. Figure 4 illustrates
how the graph layout of each level is done independently and how this
causes the intersections in the final drawing stage. This example has
been created with the original software of [26].

It should be noted that it is not always possible to draw a graph
intersection-free. It is well-known that not every graph can be em-
bedded in the plane [5]. In addition to that, our setting restricts the
embedding, namely the nodes are aligned with time steps, i.e., their
x-coordinate is fixed. Figure 5 shows an example of this. While an
intersection-free layout cannot be expected for every data set, we should
strive for a minimal number of intersections. This is the topic of the
next section.

4.2 Graph Layout using Constrained Sorting of Leaves

The nested drawing of a temporal tree T requires the joint consider-
ation of the topological events in each hierarchy level as well as the
constraints due to the hierarchical nesting. We bring both requirements
into a common setting, where we search for a solution with a minimal
number of intersections.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Our approach centers around ordering the leaves of T . We will
impose constraints on this order that follow directly from the topo-
logical events and the hierarchical nesting of T . We propose a fast
heuristic and an optimization approach to find an ordering that fulfills
most constraints. Given a leaf order for T , we show how to compute a
sorting order for all other nodes of T . Details follow below.

4.2.1 Ordering and Constraints
Let B = {b1, . . . ,bn} be the set of all leaves of the temporal tree T
with B ⊆N . We aim to establish an ordering for the leaves, denoted
by σ = (b1, . . . ,bn), which is essentially an ordered sequence of the
elements of B, or a permutation. This can be seen as a function where
σ(bi) returns the index of bi in the ordering. Since a node of a temporal
tree exists only over a certain time span, we introduce the notation
σ |ta,tb as the order of all leaves whose lifetime overlaps with the time
span [ta, tb]. This restricted ordering is directly obtained from the
unrestricted ordering σ by removing leaves that do not exist in this time
span and keeping the relative order of all other elements. If we want to
address the ordering of a subset G of the leaves, independent of a time
span, we use the notation σ |G .

We introduce an ordering constraint as a tool to require that a certain
set of leaves is next to each other in a given time span. More formally,
consider a set of leaves G = {g1, . . . ,gn} which at least partially overlap
with the time span [ta, tb]. The ordering constraint C = (G, ta, tb) is
fulfilled if these leaves are next to each other in the corresponding
ordering, which can be expressed as

|G|= max
G

(
σ |ta,tb

)
−min

G

(
σ |ta,tb

)
+1. (2)

Note that we do not require a specific ordering for the leaves in G, only
that there is no other leaf between them.

We now have the formalism required to describe the hierarchical
nesting of T and its topological events as ordering constraints. We
introduce the following constraints on the leaf order:

• A hierarchical constraint imposes that the leaves reachable from
an internal node p are next to each other during the lifetime of p.
The internal node p can be any non-leaf node of T . Considering
its lifetime [ta, tb], a hierarchical constraint is formally written as
CH = (leaves(p), ta, tb).

• A topological constraint imposes that the leaves reachable from
merging and splitting nodes are next to each other at the time step
of the event. A merge/split event occurs at time step ti and includes
the nodes L whose lifetime ends at ti by merging and/or splitting
into the nodes R whose lifetime starts at ti+1. A topological
constraint is formally written as CT = (leaves(L∪R), ti, ti+1).

Figure 6 illustrates these constraints using the same example that we
used already earlier.

Assume an ordering constraint C = (G, ta, tb) is not fulfilled for a
given ordering σ . This means, the leaves G = {g1, . . . ,gn} are not next
to each other because a number of other leaves H= {h1, . . . ,hm} are
mixed in:

σ |ta,tb = (. . . ,g1, . . . ,h1, . . . ,gi,h j, . . . ,hm, . . . ,gn, . . .) . (3)

We can always fulfill this constraint, at the possible cost of breaking
others, by moving the leaves H before g1 and/or after gn. We identify
m+1 new sorting orders σ as follows:

σ0 = (. . . ,h1, . . . ,hm, g1, . . . ,gn, . . .)

...
σk = (. . . ,h1, . . . ,hm−k, g1, . . . ,gn, hm−k+1, . . . ,hm, . . .)

...
σm = (. . . , g1, . . . ,gn, h1, . . . ,hm, . . .) . (4)

t0 t1 t2 t3 t4 time

hierarchical
constraint

topol.
constraint
(merge)

topol.
constraint

(split)

hierarchical
constraint

timet0 t1 t2 t3 t4

Figure 6. We want to sort the red, green and blue leaves of the temporal
tree T . Several constraints are imposed on their ordering due to the
hierarchical nesting (yellow and orange constraints) and due to topologi-
cal events (gray constraints). In order to fulfill a constraint, the involved
leaves need to be next to each other in the ordering during the defined
time span. Note that we only add a constraint to our system if they
are not trivially fulfilled. For example, the root would always impose a
hierarchical constraint on all leaves over the entire time, yet any ordering
fulfills that. In this example, the two topological constraints are trivially
fulfilled as well and would not actually be considered by our method. In
fact, just considering the shown two hierarchical constraints suffices to
properly sort the leaves. The final nested drawing is shown in Figure 7.

Note how the ordering of the moved leaves σ |H does not change,
which may be vital for keeping other constraints intact. Furthermore,
the leaves are moved directly in front of g1 or behind gn, which also
avoids potential conflicts with other constraints as much as possible.

If an ordering σ fulfills all constraints, then the nested drawing of
the temporal tree can be done without intersections. This follows di-
rectly from the definitions above. If an ordering σ does not fulfill
all constraints, then the severity of the visual artifacts depends on the
chosen rendering method. We target two rendering methods: the nested
drawing akin to Lukasczyk et al. [26] as well as our proposed cushion
rendering (Section 4.3). The former will show a certain number of inter-
sections, where an unfulfilled constraint can lead to a single intersection
between two curves, or just as well to a larger set of intersections (cf.
Figure 4). Our cushion rendering, on the other hand, draws exclusively
the leaves as curves without intersection, but unfulfilled constraints
show up in the form of visual artifacts in the cushion shading. Figure 5
shows how both rendering approaches deal with violated constraints.

In order to support both rendering methods, we focus on obtaining
a σ fulfilling as many constraints as possible. In the following, we
propose a heuristic approach that may suffice for simpler examples,
and an optimization approach for larger data sets.

Figure 7. Solving for the hierarchical
constraints, the three leaves (See
Figure 4) can be properly sorted and
will not intersect each other in the
nested drawing. Obtained with our
heuristic in one single iteration.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4.2.2 Heuristic for Solving Constraints
Consider the leaves of a temporal tree in any given ordering. We record
the ordering constraints as discussed in the previous section by iterating
over all inner nodes and over all topological events. All unfulfilled
constraints are pushed into a first in, first out queue (FIFO). We iterate
over this queue: after popping the first element from the queue and
checking whether it is still unfulfilled, we compute the new sorting
orders σ0, . . . ,σm following (4) as described above. We continue with
the sorting order fulfilling most constraints. If we have several of
those, we choose one of those randomly. All constraints that became
unfulfilled by this procedure are pushed into the queue.1 We stop this
procedure either when the queue is empty or after a certain number of
iterations, typically after processing twice as many constraints as we
had in the queue to begin with.

In many cases, this heuristic can solve all constraints. Figure 7
shows the computed ordering for the example data set that we have
been using throughout this section. The heuristic is able to solve this
with one single iteration. In fact, the heuristic is able to find an optimal
solution for all examples in this paper except for the data set in Figure
9. Hence, we see this heuristic as a simple-to-implement option for
some applications.

In complex data sets such as the one shown in Figure 9 or the large
graphs shown in the supplemental material, this heuristic is able to at
least drastically reduce the number of unfulfilled constraints. However,
it often gets stuck in loops, i.e., it fulfills and breaks the same cycle
of constraints over and over again. Nevertheless, it is still useful in
these settings for finding a good starting point for the more advanced
optimization method introduced in the next section.

4.2.3 Simulated Annealing for Solving Constraints
A leaf order σ is a permutation of the leaves of the temporal tree. If
we have n leaves, then we have n! different σ . Our goal is to find a
particular leaf order σ violating no or only a small number of ordering
constraints. To do so, we apply an optimization method. This requires
us to define an objective function to assign a measure of quality to each
leaf order. With the optimization method we try to find the leaf order
minimizing this function.

Let {C} be the set of all hierarchical and topological ordering con-
straints. Given a particular leaf order σ , some of them may be violated.
We denote the set of violated constraints for a given σ with {C̄σ}.
We define the violation ratio v(σ) as a means to assess the amount of
violated constraints in a normalized manner:

v(σ) =
|{C̄σ}|
|{C}|

0≤ v≤ 1 . (5)

Note that lower values of v are considered to be better, i.e., we want to
minimize that function. The optimization problem can now be stated as

arg min
σ

v(σ) . (6)

We approach it using Simulated Annealing [24], which works in a
nutshell like this: we start with an initial leaf order σ0. To compute a
new leaf order σi in each iteration, we take the one from the previous
iteration σi−1 and resolve one random, currently violated constraint.
This gives us, according to (4), possibly several new leaf orders of
which we randomly choose one, denoted by σ ′. If v(σ ′) ≤ v(σi−1),
then we set σi = σ ′ and move on to the next iteration. If, however,
v(σ ′)> v(σi−1), then the main feature of Simulated Annealing comes
into effect: the new leaf order is worse than the previous one, but
it may be accepted by Simulated Annealing in an attempt to not get
stuck in local minima or loops. This is steered by a parameter called
temperature T, which is initialized with a high value and then slowly
decays with a factor 0 < d < 1 to be applied every k iteration steps:

T0 = Tinit, Ti = d Ti−1 . (7)
1Some constraints may have become fulfilled by this procedure as well. They

are still in the queue and will be removed when they appear at the front of the
queue.

In this setting, we are more likely to choose a worse new leaf order
if the temperature is high. The probability for accepting a worse leaf
order is computed as

p = e
v(σi−1)−v(σ ′)

T . (8)

The process stops once the temperature drops below a near-zero thresh-
old, or a maximal number of iterations is reached, or all constraints are
fulfilled.

We initialize this optimization with a leaf order obtained with the
heuristic from the previous section. Simulated annealing has always
been able to improve on that initial ordering. The running times range
from a few seconds to minutes, depending on the size of the problem
and the initial temperature. We evaluate this approach in Section 5 in
detail.

4.2.4 Sorting Order for all Nodes
Drawing a temporal tree requires an ordering of all nodes, which can
be computed from the leaf order σ straightforwardly: for each inner
node p of T , find the first leaf in σ reachable from p and use this index
to sort p among the other nodes from the same hierarchy level.

4.3 Adaptation of Cushion Maps
In many application cases (e.g., filesystem), the data value at each
parent node is the sum of the data of its children, see Equation (1). If
the drawing is supposed to represent the data truthfully, then the entire
space of a parent is consumed by its children. In fact, the leaves of
the entire tree consume the entire drawing space, since their data sums
up to the data value of the root. A nested drawing with space for the
parents as in Figure 7 is not the best choice for such application cases.

We propose a drawing scheme for temporal trees taking into account
exactly those application cases. It is an adaptation of the classic cushion
treemaps [38], which computed the value of the cushion for each pixel
on the CPU. We want to exploit graphics hardware and utilize the GPU
for this. Hence, we will triangulate the leaves of the tree and provide
each vertex with enough information such that the cushions can be
computed on the GPU in a shader. We will detail this in the following.

First, we need to identify all time steps in which any data value
changes in the temporal tree. This can easily be obtained by iterating
over all leaves and collecting the time steps of their time series. This
globally unique and sorted list of time steps is used to divide the time
axis (x-axis) of the drawing. Furthermore, we obtain the sum of all
leaves’ data values for these time steps. This can be used to normalize
the values in each time step.

As just observed, it suffices to draw the leaves as they sum up to
the data value of the root. Given the optimized leaf order σ , we start
with the first leaf b1. It extends over the time span [ta, tb]. We place a
triangle strip at the bottom of the drawing space. The x-coordinates are
given by the global time steps in [ta, tb]. The y-coordinates are given
by the normalized data value in each time step. We add a triangle strip
for every subsequent leaf in the same manner, except that they attach to
the top of previously drawn leaves.

Topological events need special treatment. Our goal is to indicate
the merge or split by means of a merging/splitting highlight curve in the
final cushion rendering. We make the transition as follows: consider
a split event where a leaf b1 splits into leaves b2,b3. Due to our data
structure, b1 ends directly at the time of the split, while b2,b3 start
there. Also, they match in size, i.e., d(b1) = d(b2)+d(b3). We insert
a new vertex a bit before the event into the triangle strip of b1. It is
placed directly on top of the cushion highlight and connected to the
regular first vertices of b2,b3. This way, we impose a split on the
cushion highlight following the split in the data. This works just as
well for merges and also for events with more splits/merges than two.

Once the triangulation is done, we provide cushion information to
each vertex. Cushion rendering [38] has the goal to communicate
hierarchical information even in situations where the parents cannot be
seen. The main idea is to simulate a virtual “landscape” that reveals the
nesting information through shading. Basically, each node of the tree
is assigned a parabola with the height depending on the hierarchy level

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

of the node. Assume a node is placed between [y0,y1] in a given time
step, then the parabola is given as:

∆z(y) =
4 f `h (y− y0)(y1− y)

y1− y0
, (9)

where h is a base height for all cushions and 0 < f < 1 determines
the height decay over increasing hierarchical levels. The final cushion
“landscape” is the sum of the parabolas of all nodes. Thankfully, the
sum of two parabolas is a parabola itself! Hence, we can describe the
final cushion “landscape” by assigning an appropriately summed-up
parabola to each leaf. Technically, we store the parabola parameters at
the vertices of the leaf triangulation and use this to perform shading
calculations on the GPU.

Lastly, we also use color to indicate the hierarchical nesting. To do
so, we traverse T starting at the root, visiting each node and distributing
colors between user-defined hierarchy levels. The colors are chosen
in different ways, e.g., randomly, along the hue axis of the HSV color
model, or using different colorbrewer schemes [7].

4.4 Interacting with Temporal Treemaps
Our final visualization comes with a number of interactive elements.
Aspects such as color, cushions, lighting conditions, node selection can
be modified interactively after the finalization of the order.

Through exploiting GPU shading procedures, we can interactively
change light attributes such as its direction or ambient/diffuse colors.
For the cushions, varying the parameters h and f highlights different
aspects of the hierarchy. A lower factor f puts more focus on the
first hierarchy layers, whereas higher values emphasize deeper parts.
Changes in height h lead to overall flatter or steeper height profiles. We
can also choose a depth range for coloring and cushioning. This allows
to explore the data through focusing on selected hierarchical layers.
Further filtering on the time span and toggling of first level hierarchy
nodes is supported as well.

We refer the reader to the supplemental video where these interac-
tions are showcased.

5 EVALUATION

5.1 Comparison to Lukasczyk et al. [26]
We start with a comparison using a closeup of the Viscous Fingers data
set, which was used in the publication of the original method for Nested
Tracking Graphs [26]. We thank the authors for making their code
and data publicly available. Figure 8 shows a side-by-side comparison
of the graph layouts. It can easily be seen that our method creates an
intersection-free layout, while the original method fails to do so.

Figure 9 tells a similar story, except that this data has more time
steps and shows even more intersections for the original method. The
underlying time-dependent data, which we will refer to as the Cylinder
data set, describes vortex activity in the wake of a square cylinder by
means of the Okubo-Weiss criterion [12, 39]. We look at a part of a
temporal zoom-in of 15 time steps.

In Table 1 we compare the data structures employed by either method
in a quantitative manner. The compression ratio of our new aggregated
temporal tree T is highest for data sets where only a few nodes change
per time step. The Pyhton data set is an example for this as it records
all changes to the Python source code file tree by scanning over 100k
commits to the repository over a time range from the 1990s to now.

The most important advantage of the aggregation are the drastically
reduced computation times of our algorithm. For example, our method
needs 30 seconds for the aggregated version of the Cylinder data set
with its total of 508 time steps. The non-aggregated version incurs a
running time of 30 minutes.

We deem it unfeasible and not constructive to compare our method
and the method of Lukasczyk et al. [26] in terms of computation times.
We employ drastically different technologies. While Lukasczyk et
al. [26] call Graphviz for most of the layout, the final drawing happens
in Javascript in the browser. In our case, everything is done native in
C++. Still, in neither case, a user has to wait longer than half a minute
to get a result.

(a) Layout using the method of Lukasczyk et al. [26].

(b) Layout using our algorithm.

Figure 8. Closeup of the Viscous Fingers data set from [26]. We zoomed
into the time range [40,47] to highlight the intricate structures. Note how
our algorithm produces an intersection-free layout, whereas some bands
are intersecting each other for the original method.

(a) Layout using the method of Lukasczyk et al. [26].

(b) Layout using our algorithm.

Figure 9. Layout of a nested tracking graph in the Cylinder data set.
The red circles indicate regions where the original method for Nested
Tracking Graphs [26] produces a layout with many intersections. Our
method is able to produce a layout with just one intersection. We are
looking at a temporal and spatial zoom-in covering about 15 time steps.
A larger, zoomed-out version is shown in the supplemental material.

Nevertheless, it should be noted that our method needed less than a
second for the results shown in Figures 8b and 9b.

Data Set Aggregated Data Structure T Non-Aggregated Data Structure G

|N | |EN | |ET | Memory |N| |EN | |ET | Memory

Viscous Fingers 379 589 344 0.01 MB 919 918 884 0.03 MB
Cylinder 7094 10236 3923 0.24 MB 28904 31539 21810 0.92 MB
Python 11643 11642 0 0.22 MB 372127 372025 360484 12.6 MB

Table 1. The aggregated data structure introduced in Section 3 has a
significantly lower footprint, especially for filesystem data sets such as
the Python data set.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5 10 50 100
0

0.1

0.2

0.3

0.4

B
et

te
rS

ol
ut

io
ns

Iterations per Temperature k

v(
σ
)

Initial Temperature Tinit = 2.0

5 10 50 100
0

0.1

0.2

0.3

0.4

Iterations per Temperature k

v(
σ
)

Initial Temperature Tinit = 5.0

5 10 50 100
0

0.1

0.2

0.3

0.4

Iterations per Temperature k

v(
σ
)

Initial Temperature Tinit = 10.0

Decay
d = 0.8
d = 0.9
d = 0.99

Figure 10. This parameter study for the Simulated Annealing method shows that, on average, it behaves quite stable. We investigated three initial
temperatures T0 (2, 5, 10), four settings for the number of iterations k until a temperatures decay occurs (5, 10, 50, 100), and three distinct settings
for the temperature decay factor d (0.8, 0.85, 0.9). See Equation (7). Each bar summarizes 100 runs for the respective setting. The plots show that
very good results can be obtained with any of the presented settings, but the spread of the individual runs should not be neglected. We propose to
run several times, possibly in parallel, since a single run takes less than a second.

5.2 Evaluation of Simulated Annealing

Figure 11 plots the number of violated constraints during a run of the
Simulated Annealing method on the Cylinder data set shown in Figure
9b. The method starts with only a few violated constraints, but after
about 25 iterations and with still high temperature it chooses to worsen
the condition and break some constraints in an attempt to find a globally
better solution. This is a typical behavior of Simulated Annealing and
actually one of its advantages. Once the temperature cools down,
the fluctuations lessen and the method found a good solution around
iteration 350. This whole procedure takes less than a second.

0 100
0

20

40

0 100 200 300 400 500

Heuristic Simulated Annealing

Iteration

Violated Topological Constraints
Violated Hierarchical Constraints

Figure 11. We fist run the heuristic for twice as many iterations as
there are constraints. The approach then may choose to run into worse
conditions (violate more constraints) during the Simulated Annealing part
in order to not get stuck in local minima. Still, it found a configuration
after 355 iterations that violates only a few topological constraints. This
is a run on the Cylinder data set shown in Figure 9b.

We conducted a parameter study for the very same data set. We
investigated three initial temperatures, four settings for the number
of iterations until a temperature decay occurs, and three settings for
the temperature decay factor. We ran Simulated Annealing for the
entire so-defined 3D parameter space and Figure 10 shows the three
two-dimensional projections of the results. The plots show that very
good results can be obtained with many different settings. We observe
a slight advantage of parameter settings with longer run times, i.e.
higher initial temperature, more iterations per temperature and higher
decay. On average, the method behaves nicely and leads to stable
results. However, since it uses randomness by design, the spread of the
individual runs needs to be accounted for. For example, it is advisable
to run the method several times and choose the best result. This can
be done in parallel. Our implementation is currently not parallel and
requires less than a second on current hardware.

1950 2015 2080
0

0.2
0.4
0.6
0.8

1
→ ProjectionEstimation←

1950 2015 2080
0

0.4

0.9

1.4

1.9 ·107

(a) World population development according to the No Change model, where
fertility and mortality remain on the levels recorded between 2010 – 2015.

1950 2015 2080
0

0.2
0.4
0.6
0.8

1
→ ProjectionEstimation←

1950 2015 2080
0

0.4

0.9

1.4

1.9 ·107

(b) World population development Medium model representing the median of
several thousand projection models for fertility and mortality.

Africa Asia Europe
Latin America North America Oceania

(c) Color coding in the first hierarchy level according to regions.

Figure 12. Different types of data normalization can be used with our
cushion rendering method. The data in the left figures is normalized per
time step, whereas the right figures show the data in absolute terms. The
plots show the development of the world population until the year 2100
according to a United Nations report [35].

6 RESULTS

Besides the already shown results, we would like to showcase the utility
of our approach with three more data sets.

Different types of data normalization can be used with our method.
Figure 12 exemplifies this showing the development of the world popu-
lation until the year 2100 as projected by the United Nations in World
Population Prospects: The 2017 Revision [35] according to different
models making assumptions on fertility, mortality and net migration.
We show two of the nine variants here; see the supplemental material
for all variants and details. Figure 12a shows the population develop-
ment assuming that fertility and mortality remain unchanged. The left
image shows the data with a normalization per time step. This utilizes
the entire visualization space and supports relative size comparisons:
Europe’s fraction of the world population declines over the entire time
span, Asia’s fraction declines since the early 21st century, whereas

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

German Unification

Dis. of Yugoslavia

Dissolution of
the Soviet Union

1975 1990 2005

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
Po

pu
la

tio
n

Western Europe Southern Europe Northern Europe
Eastern Europe Other

Figure 13. Development of Europe’s population between 1975 and 2016.
A number of splitting and merging events on the country level occur as
highlighted by the cushion transitions.

more than every second human will live in Africa by the year 2100.
The right image in Figure 12a shows the same data in absolute terms
(normalized to the global maximum), which reveals that the absolute
population numbers are constant for all regions at least since the early
21st century, except for Africa experiencing a strong increase. Note
that this model is considered to be unrealistic. The most likely model
according to [35] is shown in Figure 12b. The right image reveals that
the world population levels out at around 11 billion people.

The data in the previous example does not contain topological events,
even though an accurate depiction of history would show splitting and
merging countries. Especially Europe has been subject to a number of
such cases in the 20th century. We use the latest available demographic
data [34] for Europe’s population between 1975 and 2016 and adhere
to historical events such as the German unification in 1990 and the
dissolution of the Soviet Union in 1991. The result in Figure 13 shows
how the cushion rendering is effective in conveying these events.

Figure 14 shows the development of the CPython source code reposi-
tory [13] since its early development. The covered time span is between
August 1992 and March 2018 obtained by sampling every 1000th of the
101181 commits. The colored cushion rendering is effective in reveal-
ing two interesting events. First, the relative size of the Doc folder first
decreases and then increases tremendously during 2007: the Python
documentation switched from LATEX to reStructuredText and during a
brief period the Doc folder does not exist at all. Second, the Mac folder
seems to be added only around 1995. Upon further investigation, this
folder exists from the very beginning, albeit almost empty. An intro-
duction on how to use Python on Mac is introduced in August 1994.
Figure 14 shows that our rendering method can be used to identify ma-
jor trends in such data. A shortcoming of our current implementation
can be seen as well. We do not apply any form of smoothing, which
makes some parts of the plot rather discontinuous. Furthermore, it is
yet to be determined, e.g., through a user study, whether the cushions
alone allow for perception of the hierarchical nature of the data. We
suspect the combination of color and cushions is needed.

7 CONCLUSIONS AND FUTURE WORK

We presented a novel layout algorithm for temporally evolving trees
with changing topology and data. Based on a combination of a heuristic
and simulated annealing, it produces a layout with as few intersec-
tions as possible. Our evaluation has shown that the algorithm runs
fast, which is also fostered by our new data structure for temporally
evolving trees, recording only the changes to the tree. Our new cushion-
based rendering scheme highlights temporal evolution and hierarchical
nesting at the same time.

Our current objective function in Equation (5) essentially only counts
the number of violated constraints. It is an interesting avenue for future
research to incorporate more aspects such as the severity of the visual
artifact of an unfulfilled constraint depending on the chosen rendering

Demo

Doc

Lib
Mac

Modules

Objects
Python Tools

MiscPC

1995 1998 2001 2004 2007 2010 2013 2016

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

Fi
le

Si
ze

Figure 14. Evolution of the Python repository from 1992 until now. We
can see the major development trends with some folders becoming very
large and supposedly important over time.

method, the associated data values (thickness in the final drawing), or
the wigglyness of the final drawing similar to how Bartolomeo and
Hu [2] did this for stream graphs.

We excluded cases where a child changes its parent. This happens
often in filesystems: a file is moved from one folder to another. In
Figure 13 we have modeled this case for the Soviet Union by splitting
the parent into two separate nodes: one before the move and one
after the move. However, for a data set with many moving nodes, the
introduction of splits diminishes some of the efficiency gained by our
data structure. A direct support for moving a node to a different parent
is desirable, yet any such move leads to an intersection in the drawing,
since the child needs to cross over to the other parent. Nonetheless, one
may be able to minimize the number of intersected bands.

Furthermore, we believe the navigation of our visualization can be
enhanced by connecting it to a snapshot visualization through linking
and brushing. Lukasczyk et al. [26] display the isosurfaces for a hierar-
chy level alongside the Nested Tracking Graph allowing for selection
and highlighting of components. For the other types of data sets (file
systems, world population), a 2D treemap or a world map can serve to
visualize the state of the chosen time step in a different context.

ACKNOWLEDGMENTS

This work was supported through grants from the Swedish Foundation
for Strategic Research (SSF) and the Swedish e-Science Research
Centre (SeRC). The presented concepts have been implemented in the
Inviwo framework.

REFERENCES

[1] M. Balzer and O. Deussen. Voronoi treemaps. In Proceedings IEEE
Symposium on Information Visualization, pages 49–56, Washington, DC,
USA, 2005. IEEE Computer Society. 2

[2] M. D. Bartolomeo and Y. Hu. There is more to streamgraphs than movies:
Better aesthetics via ordering and lassoing. Computer Graphics Forum,
35(3):341–350, 2016. 3, 9

[3] D. Baur, B. Lee, and S. Carpendale. Touchwave: Kinetic multi-touch
manipulation for hierarchical stacked graphs. In Proceedings ACM Interna-
tional Conference on Interactive Tabletops and Surfaces, pages 255–264,
New York, 2012. ACM. 1, 3

[4] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of
dynamic graph visualization. Computer Graphics Forum, 36(1):133–159,
Jan. 2017. 3

[5] J. A. Bondy and U. S. R. Murty. Graph theory with applications. Elsevier
Science Publishing Co., Inc., New York, 1976. 4

[6] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms. Journal of
Computer and System Sciences, 13(3):335–379, 1976. 3

[7] Brewer, Cynthia A., 2018. http://www.ColorBrewer.org, accessed 2018. 7
[8] M. Bruls, K. Huizing, and J. J. van Wijk. Squarified treemaps. In Proceed-

ings Joint Eurographics and IEEE TCVG Symposium on Visualization,
pages 33–42. Eurographics Association, 2000. 2

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.inviwo.org/

[9] K. Buchin, M. J. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek.
On planar supports for hypergraphs. Journal of Graph Algorithms and
Applications, 15(4):533–549, 2011. 3

[10] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel edge
splatting for scalable dynamic graph visualization. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2344–2353, 2011. 3

[11] L. Byron and M. Wattenberg. Stacked graphs - geometry & aesthetics.
IEEE Transactions on Visualization and Computer Graphics, 14(6):1245–
1252, 2008. 3

[12] S. Camarri, M.-V. Salvetti, M. Buffoni, and A. Iollo. Simulation of the
three-dimensional flow around a square cylinder between parallel walls at
moderate reynolds numbers. In XVII Congresso di Meccanica Teorica ed
Applicata, 2005. 7

[13] CPython repository, https://github.com/python/cpython. 9
[14] E. Cuenca, A. Sallaberry, F. Y. Wang, and P. Poncelet. Multistream: A

multiresolution streamgraph approach to explore hierarchical time series.
IEEE Transactions on Visualization and Computer Graphics, 2018. 1, 3

[15] W. Cui, S. Liu, Z. Wu, and H. Wei. How hierarchical topics evolve in large
text corpora. IEEE Transactions on Visualization and Computer Graphics,
20(12):2281—2290, December 2014. 3

[16] M. de Berg, K. Onak, and A. Sidiropoulos. Fat polygonal partitions with
applications to visualization and embeddings. Journal of Computational
Geometry, 4(1):212–239, 2013. 2

[17] E. R. Gansner and S. C. North. An open graph visualization system and its
applications to software engineering. Software: Practice and Experience,
30(11):1203–1233, 2000. 3, 4

[18] J. Görtler, C. Schulz, D. Weiskopf, and O. Deussen. Bubble treemaps
for uncertainty visualization. IEEE Transactions on Visualization and
Computer Graphics, 24(1):719 –728, Jan. 2018. 2

[19] S. Hahn, J. Trümper, D. Moritz, and J. Döllner. Visualization of vary-
ing hierarchies by stable layout of voronoi treemaps. In R. S. Laramee,
A. Kerren, and J. Braz, editors, Proceedings of the 5th International
Conference on Information Visualization Theory and Applications, pages
50–58. SciTePress, 2014. 1, 3

[20] M. T. Hajiaghayi and Y. Ganjali. A note on the consecutive ones submatrix
problem. Information Processing Letters, 83(3):163–166, 2002. 3

[21] S. Havre, E. G. Hetzler, P. Whitney, and L. T. Nowell. Themeriver: Visual-
izing thematic changes in large document collections. IEEE Transactions
on Visualization and Computer Graphics, 8(1):9–20, 2002. 3

[22] W.-L. Hsu. A simple test for the consecutive ones property. In Proceedings
of the Third International Symposium on Algorithms and Computation,
pages 459–468, London, UK, UK, 1992. Springer-Verlag. 3

[23] B. Johnson and B. Shneiderman. Tree maps: A space-filling approach to
the visualization of hierarchical information structures. In G. M. Nielson
and L. J. Rosenblum, editors, Proceedings IEEE Visualization, pages
284–291. IEEE Computer Society Press, 1991. 2

[24] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983. 6

[25] S. Liu, Y. Wu, E. Wei, M. Liu, and Y. Liu. Storyflow: Tracking the
evolution of stories. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2436–2445, Dec 2013. 3

[26] J. Lukasczyk, G. Weber, R. Maciejewski, C. Garth, and H. Leitte. Nested
tracking graphs. Computer Graphics Forum (Proceedings EuroVis),
36(3):643–667, 2017. 2, 3, 4, 5, 7, 9

[27] P. Neumann, S. Schlechtweg, and M. S. T. Carpendale. Arctrees: Visu-
alizing relations in hierarchical data. In Proceedings Joint Eurographics
- IEEE VGTC Symposium on Visualization, pages 53–60. Eurographics
Association, 2005. 2

[28] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling
approach. ACM Transactions on Graphics, 11(1):92–99, Jan. 1992. 1, 2

[29] B. Shneiderman and M. Wattenberg. Ordered treemap layouts. In K. An-
drews, S. F. Roth, and P. C. Wong, editors, Proceedings IEEE Symposium
on Information Visualization, pages 73–78. IEEE Computer Society, 2001.
2

[30] M. Sondag, B. Speckmann, and K. Verbeek. Stable treemaps via local
moves. IEEE Transactions on Visualization and Computer Graphics,
24(1):729–738, 2018. 1, 3

[31] A. Sud, D. Fisher, and H. Lee. Fast dynamic voronoi treemaps. In
M. A. Mostafavi, editor, Proceedings Seventh International Symposium
on Voronoi Diagrams in Science and Engineering, pages 85–94. IEEE
Computer Society, 2010. 1, 3

[32] S. Tak and A. Cockburn. Enhanced spatial stability with hilbert and moore
treemaps. IEEE Transactions on Visualization and Computer Graphics,

19(1):141–148, 2013. 1, 3
[33] Y. Tu and H. Shen. Visualizing changes of hierarchical data using treemaps.

IEEE Transactions on Visualization and Computer Graphics, 13(6):1286–
1293, 2007. 1, 3

[34] United Nations. United Nations Demographic Yearbooks 1984–2016.
United Nations, New York, 1984–2018. 9

[35] United Nations. World population prospects: The 2017 revision, 2017. 8,
9

[36] T. C. van Dijk, M. Fink, N. Fischer, F. Lipp, P. Markfelder, A. Ravsky,
S. Suri, and A. Wolff. Block crossings in storyline visualizations. In Y. Hu
and M. Nöllenburg, editors, Graph Drawing and Network Visualization,
pages 382–398, Cham, 2016. Springer International Publishing. 3

[37] R. van Hees and J. Hage. Stable and predictable voronoi treemaps for soft-
ware quality monitoring. Information and Software Technology, 87:242–
258, July 2017. 1, 3

[38] J. J. van Wijk and H. van de Wetering. Cushion treemaps: Visualization of
hierarchical information. In Proceedings IEEE Symposium on Information
Visualization, pages 73–78. IEEE Computer Society, 1999. 2, 6

[39] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke sur-
faces: An interactive flow visualization technique inspired by real-world
flow experiments. IEEE Transactions on Visualization and Computer
Graphics (Proceedings Visualization 2008), 14(6):1396–1403, November
- December 2008. 7

[40] M. Wattenberg and J. Kriss. Designing for social data analysis. IEEE
Transactions on Visualization and Computer Graphics, 12(4):549–557,
July - August 2006. 1, 3

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TVCG.2018.2865265

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/python/cpython

