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ABSTRACT

Percolation analysis is a valuable tool to study the statistical prop-
erties of turbulent flows. It is based on computing the percolation
function for a derived scalar field, thereby quantifying the relative
volume of the largest connected component in a superlevel set for
a decreasing threshold. We propose a novel memory-distributed
parallel algorithm to finely sample the percolation function. It is
based on a parallel version of the union-find algorithm interleaved
with a global synchronization step for each threshold sample. The
efficiency of this algorithm stems from the fact that operations in-
between threshold samples can be freely reordered, are mostly local
and thus require no inter-process communication. Our algorithm is
significantly faster than previous algorithms for this purpose, and is
neither constrained by memory size nor number of compute nodes
compared to the conceptually related algorithm for extracting aug-
mented merge trees. This makes percolation analysis much more
accessible in a large range of scenarios. We explore the scaling
of our algorithm for different data sizes, number of samples and
number of MPI processes. We demonstrate the utility of percolation
analysis using large turbulent flow data sets.

Index Terms: Computing methodologies—Distributed com-
puting methodologies—Distributed algorithms; Mathematics of
computing—Discrete mathematics—Graph theory—Paths and con-
nectivity problems

1 INTRODUCTION

Turbulent flows play a crucial role in many domains: fuel efficiency
and maneuverability of airplanes, trucks, and cars depend directly on
the understanding of turbulence during design to avoid detrimental
flow characteristics and exploit beneficial ones. Turbulence appears
not only on the outside of vehicles, but also in engine components
or oil pipelines. Roughly half of the energy spent worldwide in
transporting people and goods is dissipated by the turbulent motion
in the immediate vicinity of the moving object, e.g., near the surface
of a plane. A better understanding of turbulent flows can reduce this
energy consumption and help make our life more sustainable.

Despite a century of research, a comprehensive characterization
of turbulent flows is still an open and actively researched matter
which is primarily addressed through direct numerical simulations
(DNS) of the Navier-Stokes equations. It is the computationally most
intensive form of flow simulation. For decades to come, turbulence
research will exhaust the computational power (time and memory) of
the largest supercomputers to perform more detailed simulations and
get a better understanding of the underlying physical phenomena.

Percolation theory studies random connectivity in a graph or lat-
tice using statistics. It has been initiated in 1957 by Broadbent and
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Hammersley [6] and is widely used today to characterize complex
random systems. Its application in turbulence research has been
initialized by Moisy and Jiménez [29]. Percolation analysis is used
to understand intense Reynolds stress or vorticity events in turbu-
lent flows, and to find suitable scalar indicators and corresponding
thresholds for further analyses of coherent structures (Section 2).

Analyzing turbulent flows using percolation means to observe
the connected components of the super-level sets in a derived scalar
field for varying thresholds. Previous work [29] used a flood-fill
like algorithm with a runtime of O(nk), where n is the number of
grid vertices and k the number of tested thresholds. While such
an algorithm can easily be parallelized and distributed, it is inher-
ently slow. Several publications reported on being restricted by the
long computation times [10, 25] and resorting to remedies such as
discarding parts of the data.

Recently, Friederici et al. [13] presented an algorithm for percola-
tion analysis exploiting the union-find data structure with a runtime
of O(n logn). While this algorithm is much faster than the previous
work, it is a global algorithm and cannot easily be parallelized and
distributed. Since most turbulent flow data is too large to be hosted
on a single compute node, its percolation analysis has to run on
distributed memory as well.

We present the first algorithm for percolation analysis of turbulent
flows that works for out-of-core data sizes (Section 3). Our algorithm
works in parallel and on distributed memory, so that even the largest
data sets can be analyzed using it. Similar to Friederici et al. [13],
our algorithm builds upon the union-find data structure, but we keep
inter-process communication to a minimum by observing that many
operations in the serial algorithm [13] can be executed out-of-order
and synchronization is only necessary a small number of times.
We give the following contributions:

• We present a parallel and distributed algorithm for percolation
analysis of turbulent flows.1 To the best of our knowledge, it
is the fastest one available today (Section 3).

• We provide a scaling analysis of our algorithm for data sets
with different sizes (Section 4).

• We provide a comparison against related methods from topo-
logical data analysis (Section 4).

• We showcase the utility of percolation analysis for analyzing
turbulent flows using different large data sets (Section 5).

2 RELATED WORK AND BACKGROUND

2.1 Percolation Theory
Percolation is a mathematical concept best explained by considering
a porous stone put into water: What is the probability for the water
to reach the center of the stone? This depends on how porous the
stone’s material is. One can model this using a stochastic approach
proposed by Broadbent and Hammersley [6] that describes how the
random properties of a medium (the stone in our example) influence
the percolation of a fluid through it: consider an infinite 2D lattice L,

1Source code: https://github.com/KTHVisualization/percMPI.
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(a) Lattice with open subgraph for p< pc. (b) Lattice with open subgraph for p> pc.
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(c) Probability P(p) of a percolating cluster for an infinite lattice (blue) and
percolation function Pmax(p) for a 10242 lattice (red), and a 1282 lattice (green).

Figure 1: We consider the vertices in an infinite lattice to be open
( ) with probability p or closed ( ) otherwise. The probability
P(p) for the existence of an infinite open connected component is
zero for p < pc and one for p > pc, shown as the blue graph. The
effect is less pronounced for real data and depends on the data size,
but can still be observed clearly. See (1) for the definition of Pmax.

where we define for each of its vertices to be open with probability
p, and closed otherwise. See Figure 1 for an illustration. Open
vertices allow water to pass through, closed vertices do not. Hence,
the parameter 0 ≤ p ≤ 1 mediates the portion of open and closed
vertices; high values of p correspond to a very porous stone, while
small values of p correspond to impermeable material.

Let us concentrate on the open subgraph L′ made from only the
open vertices and their adjacent edges. We are interested in how
the structure of L′ depends on the value of p. For small values of
p, this subgraph consists of many small connected components as
illustrated in Figure 1a, each of them finite in size (remember that L
and L′ themselves are infinite). Strikingly, there is a critical value pc
for which large-scale structures form and the open subgraph contains
an infinite connected component pervading the entire domain, called
the percolating cluster. Figure 1b illustrates this as the dark black
component extending through the entire lattice. One of the most
intriguing aspects of percolation is the fact that this transition is
sharp: for p < pc, we see finite connected components in the open
subgraph L′, whereas the picture immediately changes for p > pc,
for which we see an infinite percolating cluster in L′. The critical
value pc is often referred to as percolation threshold.

Another striking result of percolation theory is that the percolation
threshold pc depends solely on the lattice connectivity. In that
regard, one first has to distinguish between site and bond percolation,
which refers to considering either vertices or edges as open/closed,
respectively. With this in mind, our above example of the 2D lattice
with 4-connectivity (infinite uniform grid) has a site percolation
threshold pc ≈ 0.5927 [12] and a bond percolation threshold pc =
1/2 [17, 20]. Many other lattice types have been researched in the
mathematics community [44]. While site and bond percolation are
related, we concentrate on site percolation for the rest of the paper.

In order to apply percolation theory to real data, we turn to level
set percolation [2, 35]: considering (seemingly) random scalar data
values at the vertices of a finite lattice, we can observe the connected
components of the superlevel sets for varying thresholds. The liter-

ature proposes different methods for determining the existence of
the percolating cluster in this scenario, but it boils down to graphing
a derived function, the percolation function, based on the volumes
of the connected components. In Figure 1c, we applied a particular
percolation function (Pmax, introduced in the next section) to random
data sampled on either a 10242 or 1282 lattice. As can be seen, the
resolution of the lattice affects the steepness of the curve around the
percolation threshold, but the transition is still clearly visible.

Percolation analysis finds its application in many domains such
as cosmology, geology, material science and epidemiology [37]. We
focus on the fluid dynamics domain as described in the next section.

2.2 Percolation Analysis for Turbulent Flows
Turbulence is not randomness. Turbulent flows are well-defined by
the Navier-Stokes equations, some parameters such as the Reynolds
number (loosely speaking, the mean speed of the flow) and the
viscosity of the fluid, as well as the shape of the geometry around
which the fluid flows. Yet, turbulent flows form many fine-grained
structures, often throughout the entire domain, that are easily mis-
taken as random. They constitute the fundamental building blocks
of turbulent flows and play a central role in the transport of mass
and momentum. The study of their statistical properties with regards
to frequency, intensity, spatial distribution and temporal evolution
contributes to a better understanding of turbulent flows.

These structures of interest can be defined as regions where the
flow exhibits a particular behavior over some amount of time. One
speaks about spatial and temporal coherence meaning that this flow
behavior can be observed in a continuous spatio-temporal region.
This region is then called a coherent structure. Flow behaviors of
interest include high vorticity magnitude [29], back-flow events near
the wall [10], or high Reynolds stresses in channel [25], duct [5],
boundary-layer [27], and shear-induced [11] flows.

While the specific definition of coherent structures varies with
the flow case and the particular research topic, their technical char-
acterization often comes down to being connected components in
a scalar field f (x, t) for a well-chosen threshold h. This means, we
are looking at the superlevel set of the scalar field defined as the set
of voxels fulfilling f (x, t)≥ h. Each of its connected components is
then considered a coherent structure.

Not all turbulent flows are homogenous. For example, wall-
bounded flows exhibit varying velocity magnitudes depending on
the distance to the wall. The identification of coherent structures
needs to account for the non-homogeneity, so that all structures
can be dealt with on equal footing. This means to normalize the
considered scalar field f (x, t): different normalization strategies are
employed, often including time averaging and disregarding parts of
the domain near the wall. We describe a normalization procedure
for a duct flow in Section 5. For now, it suffices to understand that a
normalization process ideally yields an altered scalar field f (x, t) in
which we can assume to find comparable coherent structures at the
same threshold. This leads to two questions:

• Homogeneity: Are the coherent structures distributed homoge-
neously in the domain as expected after normalization, i.e., was
the normalization successful?

• Choice of threshold: Which threshold h is a suitable choice
for further analysis such that the extracted structures are intense,
numerous, and small enough to be meaningful?

Moisy and Jiménez [29] pioneered the use of level set percolation
to answer these questions for isotropic turbulent flow: if f (x, t) has
been properly normalized, we can expect the typical steep phase
transition around the percolation threshold as depicted in Figure 1c.

The corresponding percolation function Pmax is defined as

Pmax(h) =
Vmax

Vtotal
, (1)
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where Vtotal denotes the total volume of the superlevel set for a
given threshold h, and Vmax is the volume of its largest connected
component. The steep phase transition will only appear in this
function if the coherent structures are distributed homogeneously in
the domain. Furthermore, a suitable threshold for further analysis is
then chosen relative to the percolation threshold Hc, which can be
approximated from the percolation function Pmax as the point of its
highest slope, i.e.,

Hc = argmaxh
∂Pmax

∂h
. (2)

This requires a dense sampling of Pmax, something that previous
work struggled with due to the involved computational costs.

Since its inception due to Moisy and Jiménez [29], multiple
studies have applied percolation analysis for different kinds of fully
developed turbulent flows [5, 10, 11, 25, 27]. It is interesting to note
that percolation analysis has also been applied in fluid dynamics
in the context of the transition from the laminar to the turbulent
regime [3]. In this paper, however, we focus on a fully turbulent
regime. We perform percolation analyses for selected quantities of
interest for isotropic and wall-bounded flows in Section 5.

2.3 Serial Algorithms for Percolation Analysis
Computing the percolation function (1) means to identify the total
volume of the superlevel set f (x, t)≥ h and the volume of its largest
connected component. This has to be done for a reasonable number
k of threshold samples {h1, . . . ,hi, . . . ,hk} such that we obtain a
well-resolved graph for the percolation function (cf. Figure 1c). In
practical settings, one strives for 102 < k < 104.

Percolation analysis for turbulent flows [29] was introduced using
a straightforward algorithm to be repeated for each threshold hi:
first, all vertices are marked as open if f ≤ hi, and closed otherwise.
Second, we visit all vertices and detect all open connected compo-
nents using a flood-fill algorithm. Then we can easily determine
the total volume of the superlevel set and the volume of the largest
connected component. This procedure has a runtime complexity of
O(nk), where n is the number of grid vertices and k is the number of
thresholds hi. This leads to long computation times. In fact, several
publications [10, 25] report severe problems with this aspect to the
extent that some of the data had been discarded in order to maintain
reasonable computation costs.

Hoshen and Kopelman [19] pioneered the use of the union-find
data structure for percolation analysis. Given a graph with a set
of open and closed bonds or sites their algorithm determines the
existence of a percolating cluster. This corresponds to a single
threshold h in our setting. An iterative variant for efficient simulation
of random valued lattices was introduced by Newman and Ziff [32].

Both algorithms do not consider level set percolation, for which
Friederici et al. [13] recently presented an iterative algorithm based
on the union-find data structure. It has a runtime complexity of
O(n logn) and the measured computation times for practical cases
decreased by an order of magnitude [13].

From now on, let us refer to this algorithm as the union-find
algorithm. It starts by constructing a list of vertices in descending
order of the data values. Hence, the vertex with the global maximum
appears first in the sorted list, the global minimum last. Next, we
initialize a union-find data structure UF with path compression [39]:
it has a slot for each vertex where we can store a pointer to another
vertex. It allows us to identify connected components by following
the pointers until we find an element that points to itself: this is the
representative of the connected component. We will now iterate over
the sorted list starting with the highest data value: for each vertex
v, we identify its neighbors in the underlying grid and count the
number of connected components that have already been recorded
in UF for these neighbors. The following cases occur (see Figure 2
for an example):

Extend

Create

Merge

Figure 2: We can identify connected components of the superlevel
set of a scalar field using a union-find data structure, which lets each
vertex point (indirectly) to the representative of a component (black
dots). While decreasing the threshold, we incorporate new vertices
into the superlevel set, which leads to creating new components as
well as extending or merging existing ones.

• Create: No neighbor has been recorded in UF yet. We create a
new connected component in UF by letting the current vertex v
point to itself. It is the representative of the component. Note also
that v has to be a local maximum.

• Extend: One or several neighbors have been recorded in UF and
belong to the same component. We extend this component with the
current vertex v by letting it point to the component representative.

• Merge: Two or more neighbors have been recorded in UF and they
belong to more than one component. Out of all their representa-
tives we decide on any one of them and let all other representatives
point to it. Thus, we merged the components. Furthermore, the
current vertex v will also point to that representative.

To facilitate percolation analysis, we record statistics about the
volumes of the connected components. In fact, these statistics are
updated with each create, extend, and merge operation and just need
to be stored when reaching a threshold sample hi.

This procedure is very common in topological data analysis and
finds its use in the computation of merge and contour trees [8], the
Morse-Smale complex [9, 24, 42], or watershedding [36]. Merge
trees are particularly interesting in this regard: they record the topol-
ogy of the superlevel (or sublevel) sets of a scalar field, and the
augmented version of a merge tree can be used to identify all con-
nected components and their volume for any given threshold. Hence,
one could postprocess an augmented merge tree for the purpose of
percolation analysis. We will therefore compare our work against a
parallel algorithm for merge tree computation, see the next section
and Section 4.

2.4 Parallelization and Distribution
Regarding parallel computing, one has to distinguish between two
different modes: shared memory and distributed memory.

Executing an algorithm in parallel with shared memory on a
single computer allows fully parallel reading of the data, but requires
some care when writing data to maintain consistency. This approach
is also limited to the memory available on a single computer.

On the other hand, executing an algorithm in parallel with dis-
tributed memory means to segment the data across several parallel
processes with independent memory This often includes the intro-
duction of additional structures - called ghost cells [34] - at the
segmentation boundaries. The processes run independently from
each other and are often distributed to different compute nodes in
a cluster. For large datasets that exceed the memory capacity of a
single node, distribution is often the only possible approach. De-
pending on the algorithm, the processes may need to share some of
their results with each other through an inter-process communication
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Table 1: Overview of previously introduced algorithms for comput-
ing percolation functions as well as related algorithms based on the
union-find data structure. Note that for augmented merge and con-
tour trees [15, 16], obtaining the actual percolation function samples
requires an additional post-processing step.

Algorithm Multiple Samples Parallel Distributed

Algorithms for percolation analysis
[19]
[13, 32] X
[40, 41] X X

Algorithms for union-find with graphs
[18, 28] X X

Algorithms for extracting merge and contour trees
[1, 7, 26, 33] X
[15, 16] X X
[23, 30, 31] X X

Ours X X X

protocol such as MPI [14]. Our algorithm in this paper falls into this
category.

A number of algorithms in the realm of percolation analysis and
related union-find based algorithms have been adapted to facilitate
shared- and distributed memory parallelism. However, none of them
readily support our setting of obtaining multiple percolation function
samples with distributed memory, see Table 1.

Teuler and Gimel [40] as well as Tiggemann [41] each developed
a parallel and distributed version of the Hoshen-Kopelman algorithm
[19]. Both allow to obtain a single percolation function sample and
do not pertain to level set percolation. Similarly, distributed versions
of the union-find algorithm have been proposed [18, 28], but are
tailored for unstructured graphs and cannot be updated from an
existing threshold to another.

Several algorithms have been proposed to compute merge trees
in parallel on a shared memory machine. Pascucci and Cole-
McLaughlin [33] describe two parallel algorithms for computing
contour trees. Acharya and Natarajan [1] propose a particularly
memory efficient algorithm for computing contour trees that merges
the intermediate results from different regions of the domain into
one global result. This method has been designed for shared memory
architectures, but could potentially also be adapted to a distributed
environment. Carr et al. [7] propose a data-parallel algorithm for
computing contour trees explicitly targeting SIMD architectures.
Gueunet et al. [15, 16] exploit modern scheduling techniques for
high-performance computing by providing task-based formulations
for the merge and contour tree algorithms.

Some of the above methods are able to extract an augmented
merge tree, which carries enough information to compute the per-
colation function. We will therefore compare our approach to the
augmented merge tree computation method of Gueunet et al. [16].
The authors made an effort to provide code with their publication, so
we are able to compare the results on the same machine. We detail
this in Section 4.4.

A number of algorithms have been proposed to compute merge
or contour trees in a distributed environment. Morozov and We-
ber compute separate simplified merge trees that are then merged
pairwise [30, 31]. Landge et al. [23] propose two different in-situ
algorithms for computing merge trees that work directly on the
memory layout of the simulation. These algorithms extract unaug-
mented trees only or require an additional accumulation phase and
can therefore not be used to compute the percolation function.

(a) Before merge. (b) Merge onto left
representative.

(c) Merge onto right
representative.

(d) Merge onto new
representative.

Figure 3: We can choose different valid representatives after merging
two components as long as the newly merged connected component
is correctly identified, i.e., all paths lead to the new representative.

3 PARALLEL AND DISTRIBUTED PERCOLATION ANALYSIS

We introduce the first distributed algorithm for computing the per-
colation function. It is required since many turbulent flow data sets
are too large to fit into the memory of a single compute node. We
distribute the data across several MPI processes running on several
compute nodes. The challenges with parallelizing the union-find
algorithm in a memory-distributed setting are two-fold:

• The algorithm requires a list of cells sorted in descending order
of the data values. It is not straightforward to sort a list when the
data is distributed.

• The connected components grow with decreasing threshold across
the boundaries of a single process. Synchronization between
different processes is required to maintain consistency.

As discussed in the previous section, these challenges have been
tackled in one way or another for similar algorithms such as com-
puting merge or contour trees [23, 30, 31]. However, none of the
existing methods allows us to compute the percolation function for
memory-distributed data. Furthermore, the computation of the per-
colation function comes with its specific properties (Section 3.1)
that we can exploit to design efficient data structures (Section 3.2)
and a fast algorithm (Section 3.3).

3.1 Properties of Union-Find Algorithm for Percolation
We make the following observations that aid us in parallelizing the
union-find algorithm of Friederici et al. [13] for distributed memory:

Low number of thresholds We want to sample the percolation
function with k threshold samples [h1, . . . ,hi, . . . ,hk]. This number
is much smaller than the total number of cells n in our lattice. Hence,
we can add several cells to the union-find data structure without
evaluating the volume statistics of the connected components. We
will exploit this to minimize global synchronization.

Arbitrary representatives A union-find data structure allows
us to follow a path of pointers from each cell to the representative
cell of the connected component. Many algorithms ascribe an in-
herent meaning to the exact position of that representative, e.g., the
position marks the minimum/maximum in merge tree computations.
However, we do not require this for computing the volume statistics
of the connected components. We are free to decide on the direction
of merges and to move the representative by redirecting a small
number of pointers, as long as we ensure that the components can
be correctly identified. This is illustrated in Figure 3.

Re-ordering Since we query the volume statistics only at the
threshold samples hi, the kind and order of union-find operations
between thresholds is of no particular interest, as long as the final
result remains the same. Figure 4 illustrates this, where two extend
operations lead to the same final connected component as a create
with a subsequent merge. As exactly the same cells will be added,
the final connected component is the same. This also means we do
not need to iterate over all cells in data-value order, but rather only
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Extend Extend CreateMerge

Figure 4: Processing two cells in different order. In one case (left
to right), the component is extended twice. The other way around
(right to left), a new component is created and immediately merged.
Both result in the exact same connected components.

make sure to have processed all cells with data values smaller than
hi (and only those cells) before querying the volume statistics for
that threshold. We will exploit this to increase parallelism.

Prevalence of extend operations The least expensive op-
eration is to extend an existing component: while the create and
merge operations need to update the list of connected components,
extending only adds to an already existing component and its volume
statistics. An analysis with the sequential union-find algorithm on
the duct data set (see Section 5) has shown that approximately 99.6%
of all operations were extends, with only a tiny fraction of creates
(0.21%) and merges (0.19%). We can exploit this in the design of
the distributed algorithm to balance the costs of the three operations.

Locality To process a cell in the union-find algorithm, we only
need access to its neighbors and their information. More precisely,
we need to be able to identify the representatives of the connected
components of the neighbors.

Contrast to other algorithms Some of the above properties
are unique to the percolation algorithm and in stark contrast to other
algorithms making use of the union-find data structure. For example,
merge tree algorithms record the topology changes of the superlevel
sets, i.e. all creates and merges, and can therefore not afford to
re-order their union-find operations.

3.2 Data Structure
Our algorithm follows the same structure as the non-distributed
version. For a set of values hi, every cell with value c≥ hi indicates
which connected component they belong to within a union-find (UF )
data structure. To that end, every cell with scalar value hi ≤ c < hi−1
is added into UF by either a create, extend or merge operation. Then,
the necessary statistical values are recorded, namely the volume of
the largest connected component and total superlevel set.

Our algorithm executes as follows for each value range [hi,hi−1):
first, every process updates the union-find data structures of a partial
domain. Small slices of these union-find cells and lists of connected
components are sent to a unique global process. In a sequential step,
this global process updates the few remaining cells and resolves
all merge operations that happen across processes. Finally, this
aggregated data is distributed back to all other processes. These four
steps will be described in detail in Section 3.3.

3.2.1 Spatial Distribution
While our algorithm is applicable to different lattices, we will fo-
cus the description on three-dimensional curvilinear grids with 6-
neighborhood. The basic idea to facilitate distributed processing
is to partition the domain across several processes. Each process
contains all data necessary to perform union-find operations: the
scalar data ordered by value and a union-find data structure UF .

Each cell update entails gathering the connected component iden-
tifiers of all neighboring cells to enable creating, extending and
merging union-find operations. Updating the outer cell layer on a
processor thus requires the UF data from a different processor. This
UF data is transferred in the form of ghost cells - small UF layers
that are not updated on the receiving process. Ghost cells are a
common concept for interfacing between processes in distributed

local localglobal
outer local layer

process I process IIIII

Figure 5: Basic layout of our memory distribution. Local cells reside
on local processes. Global cells (green) are held by the unique global
process. Both global cells and the outer cell layers (yellow) of local
processes will be sent between processes as ghost cells.

(a) 2×3, outlines separate processes (b) Global cells of a 2×2×3 grid

Figure 6: The spatial distribution in a 2D and 3D domain. A skeleton
of global cells (green) requires some neighboring cells as ghost cells
(yellow). The local cells (white) take up the most part.

computation. Note that in our application, special care has to be
taken that all ghost cells pointers can be traced. In general, ghost
cells can only point to other ghost cells, or the receiving process
cannot match the cells to their respective connected components.

Since each union-find step requires full information of its neigh-
bors, we cannot update two neighboring cells in parallel. A simple
example where the attempt would fail is two neighboring cells con-
currently creating a new connected component next to each other.

To circumvent this problem, we introduce a global process. It
contains layers of cells between each set of processor blocks. A
simple case with two common local processes is shown in Figure 5.
While the local processes update their cells, they have access to the
global cells as ghost cells. In a subsequent step, the global cells are
updated by the global process, given their neighbors as ghost cells.
This way, no neighboring cells are ever written to simultaneously.

In general, more than two local processes are employed concur-
rently, with global cells in between in form of a skeleton structure.
The resulting block distribution is shown in Figure 6 for a 2D and
3D field. Local processes contain the majority of cells. To optimize
efficiency, their volume should be compact and large in compar-
ison to their surface to keep the number of ghost cells requiring
communication small.

3.2.2 Connected Component Lists

The ultimate goal of the percolation algorithm is to gather statistics
of connected components. As these grow, they will lay partially
within several processes - see for example Figure 5, where the top
connected component is distributed between all 3 processes present.
Such a connected component is called a global component.

Several processes hold partial volumes about these components.
Additionally, merges between several such components are rather
complicated and need to be resolved consistently. In order to com-
municate merges and collect volumes, we need to re-think the way a
cell is linked to a connected component.
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localgloballocal

1 1
2 2

4 4

3

Figure 7: The four basic phases of our algorithm:
1) update the local processes in parallel
2) send data to the global process
3) update the global process and collect statistics
4) distribute data to the local processes
Thick lines represent the scalar data per process, while dotted lines
mark ghost cells. The green and yellow regions respectively overlap.

To this end, we introduce component lists. A representative of
a connected component in UF will point into this list by means of
a unique component identifier, corresponding to the list index. By
storing the volume of the (partial) region in the list, it now contains
all statistically relevant information, namely the number and volume
of all connected components. To avoid a gathering step, the largest
and total volume of all components are stored additionally per list
and are expected to correctly correspond to the list’s content.

All local processes keep their own connected component list.
In addition, each process holds a copy of a global component list.
It holds all global components, with their partial volume on the
respective process. When a global component is shared between
processes, the partial regions within each process have their own
representative, each using the same component identifier. See for
example Figure 8, where both the local and global process point into
a copy of the global component list.

Union-find operations can call for one of three different actions
on a component list: create a component A, extend a component
A or merge one component A onto a second component B, noted
as A→ B. Each operation will call for a change in volume of one
component, easily achieved by adapting the respective value. Creat-
ing or merging operations will in addition add or remove connected
components from the list, respectively. To prevent ambiguity, only
the global process is ever creating or merging global components.

3.3 Algorithm
After loading and sorting the scalar data per process, we repeat these
steps (see also Figure 7) for each value range (hi,hi−1], i = 1,2, ...k:
1) All local processes update by adding all cells with values in
[hi−1,hi) into UF . Merges between global components are recorded.
2) Each local process sends the outer ghost cell layer, a global com-
ponent list copy, global merges and statistics to the global process.
3) The global process updates the global cells. All global component
merges are resolved. The number of components as well as the
largest and total volume are recorded.
4) The resolved merges are broadcast to all local processes. Repeat
from 1) for the next value range i← i+1.

We provide an example of these steps in Figure 8 as an overview
of the data structures involved and several union-find operations.

Our source code1 is provided for further detail and reproducibility
as a FreeBSD licensed, standalone C++ application, including all
settings for the experiments shown. It compiles out-of-the-box and
supports random generation, raw data as well as normalization.

1) Local Process Update
The main purpose of this step is to update the UF data structure of lo-
cal processes by adding all cells in the current value range [hi,hi−1).
As mentioned, we distinguish local and global components.

Local components lay fully within the local process and are very
easy to handle, see for example components a and d in Figure 8a.
In fact, we can apply all union-find operations in exactly the same
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(d) Setup after communication step 4)
Figure 8: Example of a full update cycle, transferred data in red.
(a) Before step 1), local components a and d and global components
B and C are known. The value Pmax = 4/19 was just recorded.
(b) In step 1, a new local component, e, is created. Furthermore, the
local component a is extended onto the boundary and converted into
a global component, yet without identifier. Components d and C
merge, which is resolved locally by removing d and extending C.
The data marked in red is transferred to the global process in step 2):
the maximum and total volume of the local components, the newly
created global component representative and volume, the outer cell
layer as ghost cells and the local copy of the global component list.
(c) Before updating the global cells, the global component A is cre-
ated from former local component a.
(d) In the global cell update step 3, adding a global cell merges
C→ B. Component C is deleted from the global component list, the
volumes are added and the former representative of C is pointed to-
wards the representative of B. At this point, Pmax = 13/25 is recorded.
The merge C→ B and the creation of A (red) are communicated to
the local process, which mirrors the merge changes.

way as the sequential union-find algorithm described by Friederici
er al. [13] when we only encounter local components as neighbors:
When no neighboring cell points at a connected component, we
create a new one by adding an element to the local component list
and pointing at it. If the current cell neighbors exactly one connected
component, it gets pointed to that component’s representative in an
extend. In the case of several neighboring connected components,
we need to perform a merge operation. All merges of more than two
connected components can be split up into several two-component-
merges, so we will from here on only cover those. To merge two
local components A→ B, the representative of component A gets re-
pointered to the representative of B, effectively transferring all cells
from A to B. This increased connected component size is expressed
by adding the volume of A to B. Finally, the component A is deleted
from the component list. Note that all these operations will also add
to the volume of the connected component ultimately pointed to. We
also update the total volume and potentially the largest volume we
keep for the local components.

Global components contain at least one cell of the outer cell layer
or a ghost cell. They are recorded in the global component list.
Only the global process is allowed to create new global components.
Local processes record all creations of global components and are
assigned component identifiers by the global process in step 4).

Similarly, merging two global components removes one of them
from the global component list. Again, merges will be coordinated
from the global process: say that we encounter the merges A→ B
and A→ C on two different local processes. If both were to apply
their respective merge operation, we would end up with the compo-
nents B and C, instead of one large component. Instead, the global
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process will later tell both processes to perform the merges A→ C
and B→ C, resulting in one large component C.

Extend operations are performed as usual, with the additional
constraint that extending into the outer cell layer transforms the
local component into a global component. The local component is
removed and a create operation is recorded. It can be observed over
all steps in Figure 8 in the transformation of a into A.

All in all, we need to adhere to the following rules when applying
the union-find algorithm with neighboring global components: 1)
global component representatives must lay on the outer layer to be
visible to the global process, 2) create and merge operations will be
recorded but not applied directly.

2) Local to Global Process Communication
When a local process was fully updated for the current threshold
range, we send a collection of data structures to the global process.

The statistics of the local components are sent as three values: the
maximal volume, the total volume and the number of components.

A list of newly created and merged global components is sent.
The first action taken by the global process is to add all newly

created global components into the global component list.

3) Global Process Update
We add all global cells in the current value range (hi,hi+1] to the
union-find data structure. The last remaining step is to pool all
recorded global merges. These merges might be redundant and
cannot simply be applied one after the other. Instead, we construct
one final merge set, where each element contains a number of global
components to be merged onto the last element. From the earlier
example, the merge list {A→ B, A→ C} result in the merge set
{A,B,C}, meaning that A and B are to be merged onto C on each
process. These merges are now applied on the global process.

Finally, the statistics for (hi−1,hi] are assembled. By adding
all instances of the global component list together, we get the full
volume of each global component. We combining that data with
the statistics of the local components and end up with the overall
total volume, largest connected component and number of both local
and global components. The fraction between the largest and total
volume is recorded according to (1).

4) Global to Local Process Communication
Before computing the next value range (hi,hi+1], the local process
needs to enter a valid state. First, each local process creates new
global components according to the global process. Similarly, global
merge operations need to be performed. To this end, the same merge
list is sent to every local process and applied there.

The local process update step 1) requires the latest version of all
neighboring global ghost cells, which are thus sent to the respective
local processes. At this point, the full domain is now in a valid state:
neighboring cells belong to the same components on every process.
On that grounds, we can start at step 1) again.

4 EVALUATION

We evaluate the technical aspects of our algorithm using three fully
turbulent flows: a duct flow [5] of size 193×194×1000; and two
isotropic flows [43] with sizes 5123 and 40963. More information
about the data sets and analysis results can be found in Section 5.

The two smaller data sets still fit into the memory of a compute
node, which allows us to compare against the serial algorithm of
Friederici et al. [13] (Sections 4.1 – 4.2). We use the 40963 data
set to evaluate our algorithm in a distributed setup (Section 4.3).
Finally, we compare our algorithm against a parallel algorithm for
computing merge trees in Section 4.4.

All computation times were taken on – where applicable multiple
– compute nodes with 2 Intel Xeon E5-2698v3 Haswell 2.3 GHz
CPUs (16 cores per CPU) and 64 GB primary memory. Our largest

Table 2: Computation times for parts of the algorithm for varying
number of threshold samples. All times in seconds. Obtained by
averaging 10 runs on the Duct Flow data set with 32 processes.

Algorithmic Part Number of threshold samples

101 102 103 104

Sorting 0.2 0.2 0.2 0.2
Computation 0.6 0.7 0.8 1.1
Communication 0.2 0.4 3.0 31.9

computations were run on 64 of such compute nodes which are
connected through the Cray Aries interconnect technology [4].

4.1 Strong Scaling
A strong scaling analysis measures how the wall clock time changes
with an increasing number of processes working on the same total
problem size. We use 1000 threshold samples and run the algorithm
10 times to measure the speedup as the average parallel runtime in
relation to the average serial runtime.

Figure 9 shows the speedup of the parallel (blue) over the serial
algorithm (red). This is based on average serial computation times of
≈ 82 and≈ 651 seconds for the duct and isotropic flow, respectively.

First, we notice that the performance increases drastically when
going from the serial to the parallel algorithm with 2-4 processes.
In fact, the performance more than doubles when doubling the
number of processes in this range. This is mostly due to reducing
cache misses, which we confirmed with Cray performance tools.
When splitting that data over several processors, neighboring data
moves closer together in memory and the performance per processor
increases on top of the overall performance increase due to the
distribution. This effect is stronger for larger data sets (isotropic
flow) and increases the performance for up to 32 processors.

Second, we notice that the speedup throttles and goes down
around 16-32 processors. While the fastest computation times have
been achieved with 32 local processes for both data sets, the compu-
tations with 16 processes had almost the same speedup with much
less effort. Increasing the number of local processes further provides
lesser work for the local processes and induces more work for the
global communication. The reason is simple: the connected compo-
nents of the superlevel sets will quickly outgrow their small local
block and span over several blocks, thereby inducing communica-
tion costs. Note that at 32 local processes, the processes are already
distributed over multiple - in this case two - compute nodes. From
that point on we observe an increase in the standard deviation for
the runtime up to ≈ 15.8 seconds (duct flow) and ≈ 82.3 seconds
(isotropic flow). This indicates high communication costs, since
they are rather variable between compute nodes.

Overall, the algorithm does not scale well for small data loads.
This is acceptable as the goal is rather to process large out-of-core
datasets than to increase performance on formerly manageable sizes.

4.2 Scaling with the Number of Threshold Samples
Increasing the number of threshold samples yields a higher preci-
sion for the percolation function, but it also entails more global
synchronization. In fact, our algorithm only performs global syn-
chronization steps when a threshold sample hi is hit. Table 2 reveals
the strong overhead induced by the global synchronization. Fortu-
nately, most practical scenarios require only 1000 threshold samples
or less, which keeps the ratio of computation to communication time
in an acceptable range.

4.3 Data Set Larger than Single Compute Node
We run the percolation analysis for our 40963 data set on 64 local
processes. Computing the percolation function for this data set size
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Figure 9: The strong scaling analysis shows the speedup of our distributed algorithm (blue) over the serial algorithm (red). Our algorithm
scales very well and benefits from fewer cache misses. Increasing the number of processors further than 16 induces large communication costs
leading to a lower speedup. The plots are based on average computation times (10 runs) and 1000 threshold samples.

Table 3: Our method performs on par with a state-of-the-art method
for computing augmented merge trees due to Gueunet et al. [16].
While the two methods have some similar algorithmic ingredients,
the comparison needs to be taken with caution, since the two methods
compute different features, use different parallelization technologies
(MPI versus OpenMP), and run either distributed (ours) or in a
shared memory setting ( [16]).

Data Set Augmented Merge Trees [16] Our Algorithm

# Threads Computation (s) # Processes Computation (s)

Duct Flow 16 5.2 16 4.1
Isotropic Flow 16 15.3 16 18.3

has thus far been impossible with any method known to us.
Each process is run on their own compute node, since a local pro-

cess requires approximately 31.8GB of input data and data structures.
The global process holds about 6.8GB for this case.

Out of a total of 68.4 billion cells, we hold 67.9 billion local cells
and 150.8 million global cells. The outer local cell layers consist of
299.6 million cells. This means, we exchange information of about
0.66% of the cells for each threshold sample.

We ran our algorithm four times on this data and the computation
times varied between 14 and 21 minutes. This is another indication
for the rather variable communication costs between compute nodes.

4.4 Comparison to Parallel Merge Tree Algorithm

We compare our approach with the augmented merge tree computa-
tion method of Gueunet et al. [16], which computes in parallel on a
shared memory machine. It needs to be stressed that the algorithm
of Gueunet et al. [16] is not designed to compute the percolation
function: a direct comparison is ill-posed. But since both algorithms
use similar algorithmic ingredients and address the sub/superlevel
sets of a scalar function, we can expect that the computation times
are in the same ballpark. We can see this comparison as a sanity
check whether or not our implementation performs on par with a
related state-of-the-art method. Table 3 confirms that both methods
need a similar amount of computation time on the same data set and
with a similar level of concurrency. Note, however, that our method
uses MPI processes and distributes the memory, whereas Gueunet et
al. [16] uses shared memory and OpenMP threads.

5 APPLICATIONS

Percolation analysis has two major applications in turbulence re-
search: First, it can validate a chosen normalization scheme. Second,
it is crucial for determining a threshold that defines the coherent
structures. We detail these aspects using two turbulent data sets with
quite different characteristics: a wall-bounded flow in a duct, and a
wall-free flow exhibiting homogeneous isotropic turbulence.

5.1 Normalization

If we can observe a sharp transition in the percolation function,
then we know that a chosen normalization scheme accounts for the
variations in the data properly. Normalization schemes are required
to compare coherent structures in different regions of the flow (e.g.,
distance to wall) on equal footing.

The duct flow is a good example for this. It models water flowing
through a square periodic pipe. Wall-bounded flows are neither ho-
mogeneous nor isotropic. Instead, the flow properties depend highly
on both the angle and the relative position to the nearest walls. The
flow follows vastly different laws depending on the distance to the
wall and the in-stream speed. To make up for these variations, the
velocity components are normalized. We use the normalization ap-
proach of Atzori et al. [5] on their original simulation data, sampled
to 193×194×1000 data points. Average velocity and the root mean
square (RMS) are accumulated over long simulation runs. Every
component u, v and w is normalized as u = ‖ u−uaverage

urms
‖. Turbulent

structures are regions of intense Reynolds stress: uv, the product of
the streamwise and one cross-stream normalized component.

The percolation function for the normalized Reynolds stress in
Figure 10 reveals a sharp transition. Hence, the normalization was
successful in putting all coherent structures on an equal footing.
This is in contrast to the original data where the percolation function
of the non-normalized counterpart uv exhibits a vastly different
behavior as shown in Figure 12.

The impact of different kinds of normalization has further been
explored by Köpp and Friederici et al. [22], who also study the
general application of percolation analysis on sampled data.

5.2 Choice of Threshold

After establishing a proper normalization scheme, coherent struc-
tures are defined as a superlevel set and one is interested in gathering
statistics about them, e.g., their shape and wall distance [5]. But
at which threshold? Percolation analysis helps in determining an
appropriate threshold: we know that setting the threshold after the
percolation crisis means that most of the volume is consumed by a
single component. That would invalidate any further analysis of the
coherent structures. Hence, the threshold is chosen to be before the
percolation crisis.

We can observe this for the duct flow in Figure 10. We deter-
mined the percolation threshold Hc ≈ 0.86 using our method. The
component renderings in Figure 10 confirm that a threshold h = 2Hc
before the percolation crisis captures the coherent structures well,
whereas thresholds at and after the crisis contain few connected
components that consume most of the volume, which is unsuitable
for the turbulence analysis.

It is important to note that percolation analysis is quite unique in
discovering this property. For example, one may be tempted to look
at the number of components over the threshold, since one could
argue that the threshold with the most components brings out most
coherent structures. We plotted that function in Figure 10 as well and
it is remarkably featureless over the majority of the threshold range:
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Figure 10: Percolation analysis for the Duct Flow data set. On the right, superlevel sets for thresholds 2Hc,Hc and 0.5Hc are shown, with the
respective largest component highlighted in red. We observe the existence of the percolating cluster for thresholds below Hc and many small
connected components for larger thresholds.

0

0.5

1

1.5 ·104
Number of Components

02468
0

0.2
0.4
0.6
0.8

1

Hc ≈ 3.30114

h = 2Hc h = Hc h = 0.5Hc

2Hc

0.5Hc

Threshold h

Pmax(h)

Figure 11: Percolation analysis for the Isotropic Flow data. On the right, superlevel sets for selected thresholds with largest component in red.
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Figure 12: Wall-bounded flows such as the Duct Flow are neither
homogeneous nor isotropic: the flow velocity varies greatly with the
distance to the wall. Normalization is required to perform successful
further analyses. This plot shows Pmax(h) for the non-normalized,
original data. The typical percolation crisis cannot be observed. See
Figure 10 for the normalized data.

the number of connected components does not change much. In fact,
in this data set, even the volume distribution of the components does
not change much over the majority of the threshold range.

Our second data set is a turbulent flow exhibiting homogeneous
isotropic turbulence due to Yeung et al. [43]. We consider a 5123

subset of the data and show the percolation function and volume
renderings for some selected thresholds in Figure 11. The data has
been computed with periodic boundary conditions, which renders
the domain infinite. This data has turbulent structures that share
the same statistical properties independent on the spatial translation
(homogeneous) and rotation (isotropic) of the underlying frame of
reference. A normalization is thus not necessary here: note the clear
transition in the percolation function for validation. However, we
still need to find an appropriate threshold. Moisy and Jiménez [29]
use normalized vorticity magnitude to analyze such flows: regions
of high vorticity magnitude correspond to turbulent structures, and
after finding an appropriate threshold, they investigate the surface
geometry of the connected components. Figure 11 reveals rather few
and large turbulent structures after the percolation crisis at h= 0.5Hc.
Again, a threshold larger than the percolation threshold Hc needs to
be chosen to find structures with an appropriate granularity.

6 CONCLUSIONS AND FUTURE WORK

We presented a novel algorithm for percolation analysis of turbulent
flows. To the best of our knowledge, it is the first algorithm allowing
for this analysis in a distributed memory setting, so that even the
largest data sets can be analyzed. Our evaluation shows that the
algorithm scales well when increasing the number of processes – up
to a limit, when the workload for each process becomes too small and
global communication costs rise. As a sanity check, we compared
our computation times to the algorithmically loosely related method
of Gueunet et al. [16], which perform similar. We showcased the
utility of percolation analysis using different large data sets. Our
source code is freely available for reproducing these experiments.

The bottleneck of the current approach is the communication dur-
ing the synchronization step. It is worthwhile to investigate whether
a multi-step synchronization could mitigate this issue: ranks within
physical compute nodes are synchronized first and then treated as a
single local block for a synchronization across physical nodes.

Since percolation analysis is a rather new topic for the visualiza-
tion community and it is not restricted to the analysis of turbulent
flows, we deem it quite interesting to explore other use cases for it.

In relation to our algorithm and its applications, we could fairly
easily extend our method to gather additional statistics about super-
level sets. Examples would be the value histogram and the isosur-
face size, whose relationship has been explored by Scheidegger et
al. [38]. Note that these statistics depend on the sampling resolution
of the given scalar field, as discussed by both Scheidegger et al. and
Khoury and Wenger [21]. An adapted version of our algorithm could
enable these computations on a very large, densely sampled grid.
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