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Abstract In-situ visualization on high-performance computing (HPC) sys-
tems allows us to analyze simulation results that would otherwise be impossi-
ble, given the size of the simulation data sets and offline post-processing execu-
tion time. We develop an in-situ adaptor for Paraview Catalyst and Nek5000,
a massively parallel Fortran and C code for computational fluid dynamics
(CFD). We perform a strong scalability test up to 2, 048 cores on KTH’s
Beskow Cray XC40 supercomputer and assess in-situ visualization’s impact
on the Nek5000 performance. In our study case, a high-fidelity simulation of
turbulent flow, we observe that in-situ operations significantly limit the strong
scalability of the code, reducing the relative parallel efficiency to only ≈ 21%
on 2,048 cores (the relative efficiency of Nek5000 without in-situ operations is
≈ 99%). Through profiling with Arm MAP, we identified a bottleneck in the
image composition step (that uses the Radix-kr algorithm) where a majority
of the time is spent on MPI communication. We also identified an imbalance of
in-situ processing time between rank 0 and all other ranks. In our case, better
scaling and load-balancing in the parallel image composition would consider-
ably improve the performance of Nek5000 with in-situ capabilities. In general,
the result of this study highlights the technical challenges posed by the inte-
gration of high-performance simulation codes and data-analysis libraries and
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their practical use in complex cases, even when efficient algorithms already
exist for a certain application scenario.

Keywords In-Situ Visualization · High Performance Computing · Computa-
tional Fluid Dynamics

1 Introduction and Background

The availability of High-Performance-Computing (HPC) resources and effi-
cient computational methods allow the study of complex turbulent flows via
time-dependent high-fidelity numerical simulations. This type of flow is ubiq-
uitous in nature as well as industrial applications, and it plays a crucial role
in phenomena as diverse as atmospheric precipitations and the creation of the
lift and drag forces acting on aircraft.

In the context of computational fluid dynamics (CFD), we consider both
direct numerical and well-resolved large-eddy scale-resolving simulations (DNS
and LES, respectively) as high-fidelity simulations, in which most of the in-
dependent degrees of freedom of the system are resolved explicitly, without
the aid of modeling. In the case of turbulent flows, due to the large scale sep-
aration in both space and time, such an approach results in computational
meshes which may contain between ≈ 106 and ≈ 109 grid points, and simula-
tions which proceed for ≈ 106 time steps. A relevant example is the DNS of
the flow around a wing profile in [11], which employed 2.3 × 109 grid points.
Carrying out these studies is challenging for two reasons: on the one hand,
because of computational costs of the order of multiple millions of CPU hours,
and, on the other hand, because the datasets created by each simulation can
be as large as tens of Terabytes.

To mitigate the first difficulty, researchers have focused on developing codes
with high strong scalability, which requires minimizing communication and
load imbalance between nodes, as discussed e.g. by Merzari et al. [16] and Of-
fermans [18]. This approach results in software packages that, although they
often employ sophisticated numerical strategies, are relatively simple and can
be used efficiently on a large number of cores. In particular, CFD codes are
often limited to the solution of partial differential equations and do not pro-
vide data-analysis or visualization tools. Nek5000 [8], which we consider in
this work, is one of such codes. Because the software employed for the actual
simulation is not equipped with tools for post-processing, the typical workflow
followed by CFD researchers requires to externally store intermediate datasets,
which are the input for further analysis. This standard procedure does not have
a significant drawback when the intermediate datasets are small, as in cases
when only time-independent statistics are retained. However, the possibility of
carrying out more complex post-processing analysis, such as to study the time
evolution of topological features, is limited by the second obstacle mentioned
above, i.e. very high input/output (I/O) requirements. The in-situ methodol-
ogy, which consists of coupling a simulation code with a set of libraries for data
analysis, is a natural strategy to overcome this difficulty, but it will become a
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viable option for CFD researchers only if the efficiency and scalability of their
code are preserved.

In-situ methods for flow simulations have gradually matured over the years
since the potential of coupling visualization with simulations was first demon-
strated in the 1990s (Haimes [10]; Ma [14]). With extreme-scale on the horizon,
Ma [15] presented the challenges and opportunities of in-situ visualization,
later realized by Rasquin [23], combining both in-situ visualization with com-
putational steering, running the flow solver PHASTA on 160k cores, connected
to ParaView running on a separate visualization cluster. More recently, using
Catalyst, Yi et al. [29] demonstrated that both simulations, visualization, and
steering could be executed on the same computational resources. The feasibil-
ity of extreme-scale in-situ processing was later demonstrated by Ayachit et
al. [2], running PHASTA using SENSEI and Catalyst for in-situ visualization
on more than 1 million MPI ranks, achieving a low 13% in-situ overhead.
Specifically regarding Nek5000, Damaris/Viz [6] performed in-situ visualiza-
tion using VisIt, and compared time-partitioning and space-partitioning and
the visualization operation is a volume slice. Color plots were also used by
Bernadoni et al. [4] who present a new adaptor for Nek5000 using SENSEI.
Furthermore, Nek5000+SENSEI and ParaView/Catalyst were used for mesh
validation by Shudler et al. [25], who also performed a scalability test up to
420 processes, but without a direct comparison of the same simulation with
and without in situ. At a similar time as Bernadoni et al. [4] and Shudler et
al. [25], we started to work on a new in-situ adaptor for Nek5000 and a stan-
dard version of Paraview/Catalyst, which does not require the use of SENSEI
for data transfer. In this paper we present our implementation, and we de-
scribe in detail the impact of a reasonably complex in-situ visualization on
the computational cost of the simulation. Note that the test case that we em-
ploy is closer to a full-scale high-fidelity numerical simulation than those in
Refs. [4,25]. Furthermore, the in-situ operations that we perform include a
three-dimensional visualization at higher resolution and the computation of
a scalar quantity in the entire domain, which makes our data-analysis more
computationally intensive. The three main contributions of this work are:

1. We design and implement in-situ visualization with Paraview Catalyst [1,
3] in Nek5000 [9], a widely-used and Gordon-Bell award winner Fortran/C
CFD code. To achieve this, we design and implement a C++ Catalyst adap-
tor in Nek5000 and a visualization and data analysis pipeline in Python.
The test case that we examined consists of a CFD simulation of realistic
size, alongside ParaView is employed for a standard visualization of vortex
clusters in turbulent flows.

2. We measure and analyze the parallel performance of Nek5000 with in-situ
operations when running up to 2,048 cores on a Cray XC40 supercomputer,
identifying the aggregation step in the visualization pipeline as the major
obstacle to achieve strong scalability.

3. We use the Arm MAP profiler to identify precisely the in-situ and message-
passing interface (MPI) functions that are causing performance degrada-
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CFD Code In-Situ Coupling Analysis/Vis Hardware Number of Cores

PHASTA [29] ParaView/Catalyst
Vorticity,
Slice

Titan (Cray XK7),
Mira (IBM BlueGene/Q)

up to 32, 768

PHASTA [2]
SENSEI with
ParaView/Catalyst

Slice Mira (IBM BlueGene/Q) up to 1, 048, 576

Nek5000 [6]
Damaris/Viz with
VisIt

Slice
stremi/Grid’5000
(HP ProLiant)

up to 816

Nek5000 [4]
SENSEI with
VisIt/LibSim

Histogram,
Slice

not specified not specified

Nek5000 [25]
SENSEI with
ParaView/Catalyst

Clipping Cooley (Intel Haswell) up to 420

Nek5000 (Ours) ParaView/Catalyst
Magnitude,
Isosurface

Beskow (Cray XC40,
Intel Haswell)

up to 2, 048

Table 1 Overview of prior work on in-situ visualization use cases and integrations for
massively-parallel computational fluid dynamics codes.

tion. We find that the parallel implementation of the Radix-kr algorithm
(used for image composition) [17,22] in Paraview Catalyst is responsible
for time spent in MPI communication.

We summarized how the most recent related works differ from the present one
in Tab. 1.

The paper is organized as follows. Section 2 provides an overview of Nek5000
and explains the different steps in designing and implementing in-situ visual-
ization in Nek5000. Section 3 presents the experimental set-up we carry out
our performance measurements. In Section 4, we describe the performance
and scaling results together with information from a parallel profiler. Finally,
Section 5 summarizes the paper and draws conclusions.

2 Methodology

While in-situ visualization promises a significant reduction of I/O and im-
proves overall execution performance (simulation and post-processing), co-
processing itself inevitably introduces overhead to code execution. In other
words, an excessive overhead during the in-situ analysis and visualization step,
despite its benefit, can hurt the performance and scalability of the simulation.
To understand the impact of in-situ visualization on parallel scientific appli-
cations, we use a CFD code called Nek5000 and implement an in-situ visual-
ization adaptor using Paraview Catalyst. To evaluate the impact on execution
performance, we run a strong scaling test to understand simulation perfor-
mance with and without in-situ visualization. Hereafter, we provide a brief
description of the two software we consider, of our in-situ implementation and
resulting workflow.

2.1 Considered software

The development of Nek5000 started in the late 1980s [9] and is still in progress
today [18,19,21,26]. The code consists of approximately 100, 000 lines of code
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and is written mainly in Fortran77 (70, 000 lines of code) and C (30, 000 lines
of code). To achieve massive parallelism, the code uses MPI for parallel com-
munication. The Nek5000 algorithm is based on the so-called spectral-element
method [20], a high-order variant of the finite-element method. Accordingly,
the governing equations are solved in weak form, and the discretization is im-
plemented following the Galerkin method [5]. In practice, the computational
domain is divided into quadrilateral (2D simulations) or hexahedral elements
(3D simulations) and, within the elements, the solution is represented by La-
grangian interpolants. In the present project, we employed the PN − PN−2
formulation, i.e. in each element velocity and pressure are defined along each
of the three directions on N points with Gauss–Lobatto–Legendre distribu-
tion and N − 2 points with Gauss–Legendre distribution, respectively. For all
the cases, we selected N = 12, meaning that the velocity is represented with
polynomials of the 11th order. Together with the accuracy and low numerical
dissipation characteristic of high-order methods, Nek5000 exhibits remarkable
scaling capability. For instance, El Khoury et al. [7] observed linear scaling
from 8, 192 to 65, 536 cores on DNS of the turbulent flow across a circular pipe
employing more than 2× 109 grid points.

We enable in-situ visualization in Nek5000 using ParaView Catalyst. Par-
aView (and the included in-situ library Catalyst) [1] is an open-source data
analysis and visualization tool geared towards large scientific data sets based
on the Visualization Toolkit (VTK) [24]. It is written in C++ but also pro-
vides bindings for other languages to facilitate large scale software develop-
ment. With a custom adapter in place to translate relevant simulation data
into VTK data structures, Catalyst steers an in-place analysis and visualiza-
tion through a pipeline. Traditional visualization is typically a post-processing
step that is decoupled to the main simulation. In other words, the develop-
ment of a visualization pipeline is often decoupled with the simulation work-
load. ParaView Catalyst enables this flexibility by decoupling the Catalyst
Adaptor and the actual implementation of the pipeline. Instead of including
the pipeline as part of the simulation and adaptor code, they are written in
a separated Python script using the ParaView Python interface. The script
defines the steps in the visualization pipeline and is executed by the Catalyst
adaptor during co-processing. In this work, we used the ParaView GUI client
to interactively generate a pipeline script using a sample dataset (data from
one time step of a simulation).

2.2 In-situ implementation

One challenge of using ParaView Catalyst for in-situ visualization for large-
scale simulation is to have all the relevant components readily compiled and
linked. In the case of Nek5000, one additional challenge is to integrate the For-
tran based simulation code with a Catalyst Adaptor written in C++. However,
this can be readily achieved through an additional wrapper that encapsulates
and exposes Catalyst adaptor functions to the simulation code, where VTK
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Quantities of interest (e.g. ) 

Spectral-element method Incompressible Navier-Stokes equation

Spectral-element mesh VTK format

from paraview.simple import *
from paraview import coprocessing

def CreateCoProcessor():
def _CreatePipeline(coprocessor, datadescription):

class Pipeline:

program NEKTON
c

call nek_init(intracomm)
call nek_solve()
call nek_end()

call exitt0()

end

vtkUnstructuredGrid *grid = NULL;

extern "C" void creategrid_(
const double *x, const double *y, const double *z,
const int *lx1, const int *ly1, const int *lz1,
const int *lelt, const int *dim)

Paraview & Mesa (C++) (external libraries)

Create isosurface

Rendering

Image composition

Nek5000 (Fortran 77, Open-source) (CFD experts)

Catalyst Adaptor (C++) (computer scientists) Pipeline (Python) (visualization experts)

Instruction for Paraview

Fig. 1 Workflow of in-situ visualization of an IsoLambda2 simulation using a Catalyst
adaptor and a pipeline script. The visualization pipeline describes the configuration and
steps (such as how data is processed and rendered) using the ParaView Python interface.

data structures are constructed and registered for co-processing. Thereafter, a
visualization pipeline can be separately constructed in a Python script (that
will be used by the adaptor) using the ParaView Python interface to define
the visualization workflow.

We describe the workflow of in-situ visualization in our code with Fig. 1. A
simulation is initiated in Nek5000 with all the relevant initial conditions pro-
vided, the simulation initializes and proceeds to time stepping. After each time
step has been computed, the simulation code calls the DoCoprocessing() function
through the Fortran adaptor and provides the Catalyst Adaptor with data
structures (in VTK) that are necessary for the visualization. The Nek5000
grid is a collection of structured sub-grids, each corresponding to one spectral
element, with duplicated points at the elements’ boundaries. The VTK grid is
created mapping the spectral-element grid in an unstructured grid, which is
assembled organizing each element sub-grid in quadrilaterals (2D simulations)
or hexahedrons (3D simulations). When called for the first time, the Catalyst
Adaptor reads a user-provided Python script to initialize a co-processor. Our
script defines, among other settings, at which time step interval the visualiza-
tions are created, how the output image is rendered (camera position, image
size, transfer function, etc.), and how the data is processed (e.g. which iso
value is used). The data structures provided by the simulation code to the
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in_situ_init

in_situ_check

in_situ_end

catalyst_init

catalyst_process

catalyst_end

coprocessorinitialize

requestdatadescription

coprocess

coprocessfinalize

create_grid

add_scalar_field

add_vector_field

catalyst_userpipe coprocessoraddpythonscript

Fortran subroutines C++ functions

Nek5000 Implemented in this project Paraview / Catalyst

Fig. 2 Structure of the in-situ adaptor implemented in this project. A more detailed de-
scription is provided in the repository documentation at https://github.com/KTH-Nek5000/
InSituPackage.

Adaptor are processed through the pipeline and eventually writes an output
image to disk. After the initial invocation, the Catalyst Adaptor only needs
to update the co-processor using the latest data for relevant time steps and
the pipeline will be invoked. One exciting feature of in-situ visualization with
Catalyst is the possibility to stream data directly to a ParaView GUI client
for live visualization during a simulation. However, our focus is on writing
visualization to files in this work.

In our implementation, we took advantage of the fact that general place-
holder subroutines for in-situ operations are already present in Nek5000. In
particular, these Fortran subroutines include 1) in-situ initialization (in situ init),
which is performed once, after a preliminary time step and before the begin-
ning of the actual time loop; 2) the in-situ processor (in situ check), which is
performed at the end of each time step; and 3) in-situ finalization (in situ end),
which is performed once, after the end of the time loop. We implemented three
corresponding Fortran subroutines, which call standard VTK functions and the
additional ones developed during the project (written in C++). The function
catalyst init corresponds to in situ init, and it includes the initialization of
the Paraview coprocressor and the reading of the visualization pipeline. The
function catalyst process corresponds to in situ check, and it includes most of
the operation. In this function, a VTK grid is created, organizing the spectral-
element mesh in Nek5000, and the set of required scalars and vector fields are
mapped into the VTK grid (e.g., pressure, velocity, and λ2). Furthermore, the
Paraview coprocessor is called, which executes the instructions in the visual-
ization pipeline. Lastly, the function catalyst end corresponds to in situ end,
and it includes the finalization of the in-situ coprocessor. The structure of the
in-situ adaptor implemented in this project is illustrated in Fig. 2.

https://github.com/KTH-Nek5000/InSituPackage
https://github.com/KTH-Nek5000/InSituPackage
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Fig. 3 Detail of the mesh in the proximity of the NACA4412 airfoil and (insert) side view of
the computational domain. Note that in the side view only the spectral elements are shown.

3 Experimental Setup

We present a test case that is designed to be of the size as a small but still real-
istic numerical simulation carried out in a typical research project, and much
larger than a tutorial case. The simulation is a highly-resolved LES, which de-
scribes the incompressible flow around a NACA4412 airfoil at a chord Reynolds
number of Rec = 100, 000 (Rec = U∞c/ν, where U∞ is the incoming velocity
of the flow at a large distance from the airfoil, c is the airfoil chord length, and
ν is the fluid kinematic viscosity). The computational domain extends in any
direction for at least 2c from the airfoil (see Fig. 3), and appropriate boundary
conditions (BCs) are imposed [28], to have a consistent velocity distribution.
The resolution to accurately simulate the turbulent flow requires a total of
48 × 106 grid points. Note that this case was included in a study of the flow
around a NACA4412 airfoil up to Rec = 1, 000, 000 [28], and that the simu-
lations at higher Rec and thus higher resolutions were designed following the
same methodology. We refer to Refs. [28,27] for a more detailed description of
the setup, relevance, and physical results.

We consider a pipeline that computes the iso-surface of the λ2 criterion [12]
at a single threshold λ2 = −200U2

∞/c
2 that highlights vortical structures in the

wing boundary layer. Additionally, we use an iso-surface of velocity magnitude
close to 0 to extract the wing surface for additional context. Note that our
adapter makes the flow pressure available as well, but the presented pipeline
does not use this additional field.

The iso-surface computation involves the extraction of geometric primi-
tives i.e. triangles and quadrilaterals and can be done locally on each pro-
cessor without communication with processors holding adjacent data points.
The visualization of iso-surfaces in a distributed setting thus entails that each
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Fig. 4 Iso-surface of the λ2 criterion [12] to identify near-wall vortical structures for the
3D turbulent flow around a NACA 4412 wing section.

processor computes and renders the geometry for its subset of the data. Then
the partial representations are combined into an image compositing step and
saved to disk. We render images at a Full HD+ resolution of 1920×1280 pixels.
An exemplary output image can be seen in Fig. 4.

It is important to note that our choice of the task performed via Catalyst
is the result of a compromise between having a simple and relatively general
study case and using the in-situ implementation in a meaningful way. The ca-
pability of avoiding an intermediate dataset on disk is particularly significant
if the post-processing requires data with high temporal frequency, which is
not the case of producing a few static figures. Nevertheless, our experiment
still allows comparing the increase in computational cost using an in-situ im-
plementation, with the storage required to perform the same operation with
traditional post-processing, which is our aim.

We perform all the simulations on the Beskow supercomputer at the PDC
Centre for High-Performance Computing (PDC-HPC) at the KTH Royal In-
stitute of Technology. Beskow is a Cray XC40 system, based on Intel Xeon
E5-2698v3 16-core (2.30 GHz) processors and Cray Aries interconnect network
with Dragonfly topology. Each Beskow node has 32 cores divided between two
sockets, with 16 cores on each. The RAM for each node is 64 GB. The total
number of cores is 53,632. We do not use hyperthreading when conducting
the experiments. We build ParaView 5.6.3 with default parameters, together
with the graphic library Mesa 18.3.3 using the Intel compiler 19.0.1.144, the
build-process manager CMake 3.15.3, and Python 3.6.5.7. Nek5000 is also
built with the Intel compiler 19.0.1.144. The full build process is described in
Appendix A.
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Cores: 256 512 1024 2048

Fig. 5 Average execution time per process on each time step over the entire simulation
for n = 1,000 in log scale. Different numbers of scaling configurations, 256 (green), 512
(purple), 1024 (orange), and 2048 (brown) cores, are used in each test case.

4 Results

We carry out a strong scalability test for the pipeline described in Section 3,
performing a single simulation with nsteps = 1, 000 for nCPU = 256, 512, 1, 024
and 2, 048 cores.

The Catalyst visualization pipeline is executed once every 50 time steps.
We do not perform any additional I/O to avoid interfering with the benchmark.

We show in Fig. 5 the average execution time per core during each time
step, denoted by 〈∆t〉, for different numbers of cores. Qualitatively, the ex-
pected inverse relation between execution time and the number of cores for
strong scalability holds: An increase in the number of processors leads to a de-
crease in execution time. Time steps when visualizations are created and saved
to disk (as annotated with Time steps with in-situ workloads) are immediately
apparent, showing a clear spike in execution time.

Similar to Fig. 5, we report the average execution time per process dur-
ing each time step with and without in-situ operations, denoted by 〈∆t〉, in
Fig. 6. For time steps without in-situ processing, 〈∆t〉 decreases from ≈ 3.7s to
≈ 0.47s when the number of cores increases from 256 to 2, 048, with a relative
parallel efficiency of ≈ 99%. However, for time steps with in-situ processing,
〈∆t〉 only decreases from ≈ 13s to ≈ 7.7s, with a relative parallel efficiency
of 21%. At the same time, the in-situ approach has an overhead of between
≈ 4.8% and ≈ 31% when using 256 and 2, 048 cores respectively. We define
overhead as the difference between the average execution time overall pro-
cesses, with and without in-situ processing and normalized by the latter. The
total overhead (in terms of extra computation time) over the entire simulation
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100

101

Number of processors
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]

Steps with in-situ

Steps without in-situ

Fig. 6 Scaling of the mean wall-time per process when scaling the number of processes.
The time steps with and without in-situ operations are marked in blue and red respectively.
A log scale is used and error bars indicate the 95% confidence interval.

depends on how frequently in-situ processing is performed. Given that a single
flow field in double precision has a size of ≈ 2.9GB, the in-situ approach results
in a reduction of ≈ 2.9 × 1, 000/50 = 58GB of required storage space. Fur-
thermore, we observe that altering the frequency of in-situ processing yields
negligible changes of 〈∆t〉 (not shown here). With the same test case, we can
estimate that using in-situ analysis once every two time steps (which would
save 1, 459GB of storage) will result in an overhead of ≈ 120% and ≈ 780%
when using 256 and 2, 048 cores respectively. The increasing overhead per in-
creasing number of cores is the consequence of coupling codes with different
scalability properties.

To investigate the lack of scalability and attempt to identify the bottleneck
in Catalyst/ParaView, we measure the time spent in pipeline execution for
different MPI ranks. We observe a remarkable imbalance between rank 0 and
all other rank and report the differences in Fig. 7. Interestingly, not only the
time spent by the pipeline in ranks different than 0 is lower, but it also shows
a better scaling. Our results show that rank 0 is a major bottleneck in the in-
situ processing pipeline. We initially suspected image writing to the file system
to be the cause of this. However, we used ParaView with the default setting
for image composition and verified that the bottleneck is not I/O related.
For this reason, we suspected the image composition itself to have caused
the bottleneck. In particular, the performance scaling of all other ranks than
rank 0 suggests that the compute workload is well distributed, indicating the
collection (assembly) to be an issue, i.e. a part of the in-situ implementation
is apparently working as a serial code.

To further explore our observation with regard to the load imbalance be-
tween rank 0 and all other ranks, we profile a full simulation using the Arm
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256 512 1024 2048

100

101

Number of processors
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[s
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MPI Rank 1

Fig. 7 Execution time per time step for the in-situ visualization pipeline, for MPI rank 0
(pink) and MPI rank 1 (yellow). Results from other ranks are not reported as they behave
similarly to rank 1. A log scale is used and error bars indicate the 95% confidence interval.

MAP profiler1 on Beskow using 256 processes on eight compute nodes. MAP is
a low-overhead profiler that enables performance analyses of compute and MPI
activities in HPC applications. We present an extract of the profiling results
in Fig. 8. The execution timeline in Fig. 8:a shows five peaks where MPI ac-
tivity is dominant, representing both the in-situ visualization (DoCoprocessing)
and synchronization (nekgsync) step. We zoom into the timeline of interest
where in-situ visualization is active in Fig. 8:b and notice that at the selected
frames, MAP reports 70.7% of the execution time is spent on MPI. This can
be explained by the activity breakdown, of which 41.4% (out of 70.7%) of
the MPI activities come from the visualization pipeline. At the same time, we
can visually confirm that MPI communication (with blue color in the time-
line) is dominating the visualization step, indicating a potential bottleneck
in the pipeline. To investigate the sources of the bottleneck, we expand the
call stack of the in-situ processing function, DoCoprocessing, in Fig. 8:c. The to-
tal core time breakdown there reveals that the WriteImages operation in the
Python co-processing pipeline is solely responsible for the 41.4% time spent on
communication. We continue to expand the stack to locate the source of the
bottleneck and eventually arrive at two MPI calls that can explain over 40%
of the MPI time. Firstly, we observe that MPI Allreduce (7.8%) (Fig. 8:d) is
used by VTK to perform the reduction in the update data step; secondly, we
notice that a large portion of time is spent on MPI Waitany (33.0%) (Fig. 8:e)
that is used in the image composition step (icetRadixkrCompose) [17,22]. In
conclusion, the MPI Waitany is mainly responsible for the bottleneck and it
indicates a major bottleneck in the image composition algorithm.

1 https://www.arm.com/products/development-tools/server-and-hpc/forge/map

https://www.arm.com/products/development-tools/server-and-hpc/forge/map
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Compute MPIa) Overall Timeline with green being compute, blue being MPI calls

b) Distribution of time 
on In-situ Visualization

c) Profiling the call stack of coprocessor.WriteImages()

The call stack leads us to two 
computationally intensive functions

d) 7.8% of time on MPI_Allreduce()  (in 41.4%) e) 33.0% of time on MPI_Waitany()  (in 41.4%)

icetRadixkrCompose()

Fig. 8 a) Profiling of a full Nek5000 simulation using Arm MAP allows us to distinguish
between compute and MPI workloads. b) The time distribution reveals that MPI accounts
for approximately 70.7% of the execution time when co-processing is active (where 41.4%
is from co-processing). c) We investigate the source of the bottleneck by expanding the call
stack of the in-situ processing function and find that d) a MPI Allreduce is taking 7.8% of
the time. e) However, a MPI Waitany that is used in the image composition inside the ICE-T
library (icetRadixkrCompose) accounts for 33.0% of the time.

5 Discussion and Conclusions

The rationale for adopting the in-situ approach is to avoid saving an interme-
diate dataset for post-processing, which may lead to considerable I/O require-
ments. However, in-situ operations inevitably have an impact on the overall
computational cost. The goal of our current effort is to investigate how these
two contradictory constraints balance for a realistic high-fidelity numerical
simulation. We implemented an adapter for the CFD code Nek5000 that orga-
nizes the data in VTK format, thus making it possible to use ParaView as an
in-situ post-processing tool through the Catalyst API. The test case that we
employed is a highly-resolved LES of the turbulent flow around a wing profile,
using approximately 48 × 106 grid points. This is the size of a small but still
realistic numerical simulation carried out in turbulence research [28].

Nek5000 exhibits approximately linear scaling when no in-situ analysis
is performed, however, when the in-situ analysis is performed, we observed
that the time per time step becomes significantly higher and it scales poorly
when the number of cores increases. At 2, 048 cores, we only observe a relative
parallel efficiency of≈ 21%. For these reasons, the usage of the in-situ approach
is practical only in two extreme cases: 1) for a relatively large simulation and
very low frequency of operations, i.e. when the overhead is negligible, and
the storage of even a few fields is not possible; and 2) for a relatively small
simulation, if a high frequency of operation is needed and there is a severe
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storage limitation, i.e. when the much higher but yet reasonable computational
cost is preferable than saving a large dataset.

To understand the lack of strong scalability, we perform detailed timing
and profiling. Timing of co-processing on individual processes reveals that part
of the in-situ pipeline is executed by a single MPI process with rank 0, spend-
ing considerably more time than other processes. This suggests that part of
the pipeline is serialized, thus limiting the achievable parallel speedup (Am-
dahl’s law). To pinpoint the issue, we used Arm MAP to perform profiling and
discovers that a majority of the co-processing time is spent on MPI communi-
cation. Further investigation shows that the time is spent on an MPI Waitany

in the image composition step (called icetRadixkrCompose). Radix-k (and its
variant Radix-kr) is an advanced algorithm for large-scale image composition.
Being a computation and communication-intensive workload, the algorithm
has been subjected to numerous optimization efforts [13,17,22]. In particular,
the algorithm enables a tunable parameter k to adapt to the system’s intercon-
nect topology. For example, previous works [13] have performed auto-tuning
on the k value for higher performance, but its impact reported in Ref. [13] is al-
most negligible compared with the overhead of in-situ operations in our case.
In this work, we have used the default parameters provided by ParaView.
Likely, an improved parallel algorithm in Catalyst for the aggregation step,
e.g., non-blocking or a highly distributed image composition and auto-tuning
of multiple parameters, would lead to a considerable parallel performance gain.

Despite our observations, it is possible that modifications to the pipeline
code or even better-optimized settings could improve the performance signif-
icantly. If this is the case, it is important to recognize that simplification of
the building process of data-analysis software is itself a goal worth pursuing.
At the time of writing, we have been in contact and communicated our find-
ings with the ParaView Catalyst developers to further scrutinize the results,
and more work will be needed in the future. A more general consideration is
that the availability of test cases of practice relevance, e.g. medium-size nu-
merical simulations for CFD researches, is important to help the adoption of
any data-analysis methodology in new areas, as well as to identify directions
of possible performance improvement. Such improvements will likely ease the
effort required and facilitate the uptake in adopting these new data-analysis
methods in the research community.
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A Sample Workflow

A sample setup of our workflow is available at: https://github.com/KTH-Nek5000/InSituPackage.
The repository contains the used versions of Mesa, ParaView and Nek5000 along with our
additions and some sample pipelines. A simpler version of the test case used here is provided

https://github.com/KTH-Nek5000/InSituPackage
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as well. A reduction in Rec to 75, 000 compared to 100, 000 used in the presented experi-
ments and in the resolution requirements allow for the example in the repository to be run
on a regular work station. Instructions to set up all dependencies and run the test case are
included.
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